
SASSY

SOFTWARE ARCHITECTURE SYSTEM

User Guide for RDFGUI

Publication History

Date Who What Changes

24 October 2019 Initial version.

24/09/20 Major revision with lots of details.

19/02/21 Forms interface.

Copyright © 2009 - 2021 Brenton Ross
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
The software is released under the terms of the GNU General Public License version 3.

ii

User Guide for RDFGUI

Table of Contents
 1 Introduction...5

 1.1 Scope...5
 1.2 Overview..5
 1.3 Audience..5

 2 A Short Introduction to RDF...6
 2.1 RDF Graphs...6
 2.2 The Central Importance of the URI...7
 2.3 On the Limits of Universality..8
 2.4 Statements and Triples...9
 2.5 Literal Data Types..10
 2.6 Data Structures...10
 2.7 Schema...11
 2.8 Reification..11

 2.8.1 Queries and Rules..11
 2.9 Submodels and Contexts..12

 3 Program Components..13
 3.1 Menu..13
 3.2 Catalogue Tab..14

 3.2.1 Opening a Model..14
 3.2.2 Adding a Model..15
 3.2.3 Submodels..18

 3.3 Models Tab..19
 3.3.1 Transactions...19
 3.3.2 Contexts...20

 3.4 Prefixes Tab...21
 3.5 Statements Tab...22

 3.5.1 Statements Table..22
 3.5.2 Statements Dialog..25

 3.6 Visual Tab..28
 3.7 Schema Tab..29

 3.7.1 Class Panel...29
 3.7.2 Property Panel..32
 3.7.3 Property Attributes Panel...32
 3.7.4 Description Panel...34

 3.8 Forms...35
 4 Tutorials...38

 4.1 Schema Examples..38
 4.1.1 Classes..38
 4.1.2 Object Properties..39
 4.1.3 Data Properties...40
 4.1.4 Domain and Range...41
 4.1.5 Containers..42

 4.2 Forms Examples..43

iii

User Guide for RDFGUI

4 SASSY

User Guide for RDFGUI Introduction

 1 Introduction
This document is the guide to using the RDF editor program, RDFGUI.

 1.1 Scope

The document will cover all aspects of using the program to view and edit
RDF data. It will also include some aspects of the RDF specification.

 1.2 Overview

The first section provides a brief introduction to RDF. This will allow the
reader to understand its benefits and determine if it is suitable for their
purposes.

The second section is divided into subsections that describe each major
component of the program.

The third section is a set of tutorials that take you through the different ways
that the program can be used.

 1.3 Audience

Anyone that wants to use RDF data.

5 SASSY

User Guide for RDFGUI A Short Introduction to RDF

 2 A Short Introduction to RDF
The following is a short introduction to RDF from Cambridge Semantics. I
have made a few changes to better align with my view of RDF.

RDF is the foundation of the Semantic Web and what provides its innate
flexibility. All data in the Semantic Web is represented in RDF, including
schema describing RDF data.

RDF is not like the tabular data model of relational databases. Nor is it like the
trees of the XML world. Instead, RDF is a graph.

 2.1 RDF Graphs

In particular, it’s a labelled, directed graph.

Therefore you can think of RDF as a bunch of nodes (the dots) connected to
each other by edges (the lines) where both the nodes and edges have labels.

The term labelled, directed graph will mean a lot to the mathematicians in the
audience, but for the rest of you I’ve included a simple example here.

This is a complete, valid, visual representation of a small RDF graph. Show it
to any Semantic Web practitioner and it will be immediately obvious to her
what it represents.

The nodes of the graph are the ovals and rectangles (ovals and rectangles are a
convention that we’ll get to shortly). Technically the edges are labelled arrows
that connect nodes to each other, but I find that using hexagons for the labels
makes it easier to read. The labels are URIs (this is very important, and we’ll
cover it in more detail in a bit).

There are three kinds of nodes in an RDF directed graph:

• Resource nodes. A resource is anything that can have things said about
it. It’s easy to think of a resource as a thing vs. a value. In a visual
representation, resources are represented by ovals.

• Literal nodes. The term literal is a fancy word for value. In the example
above, the resource is
http://www.cambridgesemantics.com/people/about#rob (once again, a
URI) and the value of the foaf:name property is the string “Rob
Gonzalez”. In a visual representation, literals are represented by
rectangles.

6 SASSY

User Guide for RDFGUI A Short Introduction to RDF

• Blank nodes. A blank node is a resource without a URI. Blank nodes
are an advanced RDF topic. I usually recommend avoiding them in
general, especially if you’re new to the space. They are listed here
simply for completeness.

Edges can go from any resource to any other resource, or to any literal, with
the only restriction being that edges can’t go from a literal to anything at all.

This means that anything in RDF can be connected to anything else simply by
drawing a line.

This idea is key. When we talk about Semantic Web technologies being
fundamentally more flexible than other technologies (XML, relational
databases, BI cubes, etc.), this is the reason behind it. In the abstract, you’re
just drawing lines between things. Moreover, creating a new thing is as easy as
drawing an oval.

If you compare this mentally to the model you might know from working with
a relational database, it’s starkly different. Even for basic relationships, such as
many-to-many relationships, the abstract model of a relational database gets
complicated. You end up adding extra tables and columns (think foreign keys,
join tables, etc.) just to work around the inherent rigidity in the system.

The ability to connect anything together, any time you want, is revolutionary.
It’s like hyperlinking on the Web, but for any data you have!

This linking between things is the fundamental capability of the Semantic
Web, and is enabled by the URI.

 2.2 The Central Importance of the URI

If you want to connect two things in a relational database you have to add
foreign keys to tables (or, if you have a many-to-many relationship, create join
tables), etc. If you want to link things between databases, you need an ETL job
using something like Informatica. It’s just not easily done.

If you consider the XML world, the same thing is true. Connecting things
within an XML document is possible, if tedious. Connecting things between
XML documents requires real work. Unless you’re one of the very few who
just loves XSLT, you’re not doing that very often.

The fundamental value and differentiating capability of the Semantic Web is
the ability to connect things.

The URI is what makes this possible.

URI stands for Universal Resource Identifier. The universal part of that is key.
Instead of making ad hoc IDs for things within a single database (think
primary keys), in the Semantic Web we create universal identities for things
that are consistent across databases. This enables us to create linkages between
all things (hold the skepticism for a second; we’ll get to it!).

7 SASSY

User Guide for RDFGUI A Short Introduction to RDF

In RDF, resources and edges are URIs. Literals are not; they are simple values.
Blank nodes are not (this is what the “blank” means in the name). Everything
else is, including the edges.

If you look at our example above, there are several examples of URIs.

• http://www.cambridgesemantics.com/

• http://www.cambridgesemantics.com/people/about/rob

• foaf:member (this is shorthand for http://xmlns.com/foaf/0.1/member)

• foaf:name (again, shorthand for http://xmlns.com/foaf/0.1/name)

The first one is the URI for the company Cambridge Semantics. The second is
a URI for Rob, the author of this article. The other two are URIs for the edges
that connect the resources (we’ll say more about URIs of edges in a minute).

You should notice that a couple of the URIs above are URLs. You can click on
them. They are valid Web addresses. So what makes them a URI?

In short, all URLs are URIs, but not all URIs are URLs. It’s a little confusing,
for sure, but the vast majority of Semantic Web practitioners stick to using
URLs for all of their URIs.

Back to the concept of universality of identity. If I have a database that
contains information about myself, I would use the URI
http://www.cambridgesemantics.com/people/about/rob to refer to any data
relating to me. If you have another database that has other information about
me, you would also use that same URI. That way, if we wanted to find all facts
in both databases about me, we could query using the single universal URI.

 2.3 On the Limits of Universality

There is a major problem with the concept of universality presented above.

It’s impossible to get everyone everywhere to agree on a single label for every
specific thing that ever was, is, or will be.

If you read the introductions to Semantic Web technologies around the web,
you’ll see lots of people focus on the importance of the URI. After all, how can
you connect things if you don’t agree on their labels? The focus on URI
definition is especially true for those creating RDF vocabularies.

What we mean by an RDF Vocabulary is essentially the set of URIs for the
edges that make up RDF graphs. The edges are what relates the things in
graph, and are what give it meaning. Using specific URIs is like speaking in a
specific language—hence the term vocabulary. For example, in order for two
Semantic Web applications to share data, they must agree on a common
vocabulary.

8 SASSY

User Guide for RDFGUI A Short Introduction to RDF

So if two applications have to agree on vocabulary for all concepts, then it
stands to reason that all vocabularies must be set ahead of time, right?
Fortunately, the a priori existence of share vocabulary turns out to be helpful,
but far from necessary. In our example, foaf:name is not the first URI ever
created that represents the name concept, and it’s OK that another URI for the
name concept wasn’t reused.

Fortunately, it is very easy to translate RDF written in one vocabulary to
another vocabulary. The Semantic Web technologies were built under the
assumption that different people in different applications written for different
purposes at different times would create related concepts that overlap in any
number of ways, and therefore there are provisions and methods to make it all
work together with little effort. There is no such provision in the XML or
relational database worlds.

Said another way, you do not have to agree on all URIs for all things up front.
In fact, it’s much easier not to do so. Reuse vocabulary when possible and
convenient, and don’t worry too much about that when it doesn’t work out.

This same universal identity conundrum also happens for resources. For
example, you could consider my Linked In profile URL to be a URI
representing me. This is clearly distinct from the URI that Cambridge
Semantics uses, but, again, the Semantic Web offers very simple ways to
merge identical concepts so that they appear as one universally.

 2.4 Statements and Triples

Now that you get the basics, I have to introduce some community jargon that
will help you understand material you read on the Web about Semantic Web
technologies.

Rather than talk in the language of nodes and edges, Semantic Web
practitioners refer to statements or triples, which are representations of graph
edges.

A statement or triple (they are synonymous) refers to a 3-tuple (hence triple) of
the form (subject, predicate, object). This linguistic, sentential form is why
RDF schemas are often called vocabularies.

As mentioned, the subject is a URI, the predicate is a URI, and the object is
either a URI or a literal value.

If we represent our graph example as a set of triples, they would be:

(csipeople:rob, foaf:name, “Rob Gonzalez”)

(csipeople:rob, foaf:member,http://www.cambridgesemantics.com/)

(Note that for brevity I’m using the namespace alias csipeople for the URI
namespace http://www.cambridgesemantics.com/people/about/).

9 SASSY

User Guide for RDFGUI A Short Introduction to RDF

RDF graphs therefore are simply collections of triples. An RDF database is
often called a triple store for this reason.

However, Semantic Web practitioners found it very difficult to deal with large
amounts of triples for application development. There are lots of reasons that
you would want to segment different subsets of triples from each other
(simplified access control, simplified updating, trust, etc.), and vanilla RDF
made segmentation tedious.

At first the community tried using reification to solve this data segmentation
problem (reification is essentially triples about triples), but today everyone has
converged on using named graphs. See section 2.9 Submodels and Contexts.

 2.5 Literal Data Types

RDF uses the same data types as XML, sometimes called XSD, an initialism
for XML Schema Definition.

XSD provides a set of 19 primitive data types (anyURI, base64Binary,
boolean, date, dateTime, decimal, double, duration, float, hexBinary, gDay,
gMonth, gMonthDay, gYear, gYearMonth, NOTATION, QName, string, and
time). It allows new data types to be constructed from these primitives by three
mechanisms:

• restriction (reducing the set of permitted values),

• list (allowing a sequence of values), and

• union (allowing a choice of values from several types).

Twenty-five derived types are defined within the specification itself, and
further derived types can be defined by users in their own schemas.

 2.6 Data Structures

RDF has some rudimentary support for data structures:

List – This is effectively a linked list structure made up of a “head” node, a
“rest” node and a “null” node to signify the end of the list.

Group or Bag – This is an unordered collection.

Sequence – This is an ordered collection.

Alternate – This is usually included with the other containers but is more like
a menu of possible values rather than something that is concrete.

10 SASSY

User Guide for RDFGUI A Short Introduction to RDF

 2.7 Schema

A schema is not strictly necessary but it can be useful for organising and
structuring your data.

You can define classes and a hierarchy of subclasses. These can then be used to
provide types for your subjects and objects.

Predicates can be divided into data properties which have literals as their
objects and object properties that have resources for their objects. Object
properties can also be organised into hierarchies.

Predicates can also have a domain and range defined. Predicates can have
characteristics, such as functional, symmetric or transitive and relations such
as sameAs and inverseOf. These can be used by inference engines to fill in
additional relationships.

The schema can also specify the expected data structures.

 2.8 Reification

Reification is the RDF term for metadata. A node can have a type of
“statement” and be linked to the nodes of a statement via “subject”,
“predicate” and “object” predicates.

This statement node can then have links to various data items such as the
author of the statement, when it was inserted into the database and the
provenance of the data. It could even have a cryptographic signature. This
metadata is sometimes called a “nanopublication”.

An additional use is to store a confidence level for the statement. RDF
statements are supposed to be facts, but facts are often just theories waiting to
be disproven.

 2.8.1 Queries and Rules

An alternative use for a “statement” node is to record statements that are not
necessarily true. The main data is supposed to only include true facts. This
makes it difficult to store a query in the database as it could be misinterpreted
as a fact. Using a statement node to store a query avoids this problem. It also
allows us to include variables in our queries.

Following on from using the statement node for queries it can also be used to
hold the statements that can be inferred from a query. An inference engine can
then use these rules to create a model of inferred statements.

11 SASSY

User Guide for RDFGUI A Short Introduction to RDF

 2.9 Submodels and Contexts

RDF has the concept of a “context”. It is a way of labelling statements so they
can be grouped together. The problem is that no two proponents of RDF can
agree on exactly how contexts should be used. [They also cause a significant
increase in model size since our triples have now become quadruples.]

The Redland library, on which rdfxx is built, has good support for contexts but
has not properly implemented submodels. I had used contexts to create a
system which enables RDF models to be used as reference data for other RDF
models. We can thus build more complex databases from smaller models.

In practice it appears that the Redland support for contexts isn't all that good.
The performance drops off drastically when contexts are enabled. Hence my
submodel implementation does not use contexts. This means that my system
does not include the ability to remove submodels from an open model.

12 SASSY

User Guide for RDFGUI Program Components

 3 Program Components

 3.1 Menu and Toolbar

File | Exit – This leaves the program.

Edit | Prefix - This brings up a dialog for editing a prefix. (see below)

Edit | Statement - This brings up a dialog for editing a statement. (see below)

Edit | Edit – This brings up the Forms interface (see below).

View | Format – This brings up the format dialogue. This can be used to
specify how data values are displayed.

View | Visual + - This increases the span shown in the Visual tab.

View + Visual - - This decreases the span shown in the Visual tab.

Help | Info - This shows various attributes that are built into the Redland RDF
library.

13 SASSY

User Guide for RDFGUI Program Components

 3.2 Catalogue Tab

This is used to manage a catalogue of RDF databases. Projects will often use
more than one RDF model (aka database) and this tab allows you to specify all
the ones you need for a project. Since rdfgui is a general purpose program its
catalogue will probably end up with all of your models.

 3.2.1 Opening a Model

On the left is a list of all the models. When one is selected its details are
displayed in the panels to the right. The “Open” button can then be used to
open the model. This will cause the other tabs to be displayed.

[The rdfgui program is a little unusual in that its user interface is completely
redrawn whenever the model is modified. This may change in the future, but
for now it is programmatically convenient.]

To the right of the list of models is a panel showing the data that is common to
all models. These values are set when the model is entered into the catalogue.

Further to the right are the values that are specific to the type of storage used.
A button is available to remove a model from the catalogue. Removal from the
catalogue is non-destructive – the file or database remains.

14 SASSY

User Guide for RDFGUI Program Components

 3.2.2 Adding a Model

Add a name for the model in the field “New Model Name”, select the type
from the dropdown, and then press “New”.

Fill in a description for the model and the other values as appropriate:

When the selected type is “memory” or “indexed” the above panel is
displayed. These are both only held in memory. Use indexed for large models.
You can optionally enable contexts for these models when opening them.

When the selected type is “file” the above panel is displayed. You can either
enter the name of the file or leave it blank and press “Create” to create a new
RDF/XML file, or “Add” to add an existing file using a file selection dialogue.

When the selected type is “uri” the above panel is displayed. You can paste in
the URL of an RDF file from the internet. [Opening may be a little slow as the
data is retrieved across the net.]

15 SASSY

User Guide for RDFGUI Program Components

When the selected type is “postgresql” the above panel is displayed so you can
create a triple store in a PostgreSQL database. The “Store Name” should be
the same as the model name [this will be automatically set in future]. The
“Host Name” is the location of the database server. [Should also have the port
number.] The “Database Name” is the name of a database on the server which
must be created beforehand. The User and Password are for the log in to the
database. [Buttons for adding and removing an entry in the catalogue for an
existing database will be added.]

 3.2.3 Submodels

On the far right a panel shows the submodels that the selected model imports
and buttons for adding and removing submodels.

The underlying C library does not have real support for submodels, so I have
created my own. When a model has submodels it is not opened directly but a
separate model, using hashes, is created and the selected model is loaded into
it, followed by a single instance of each of the submodels, recursively. All
updates are applied to both the hashes model and the selected model, however
some actions are not fully supported.

Adding or removing submodels has no effect other than to load their
statements when the model is opened. The models and the underlying storage
are not affected – it is entirely an artifact of the catalogue.

The Disable button allows you to open the model without the submodels whilst
retaining the association.

16 SASSY

User Guide for RDFGUI Program Components

 3.3 Models Tab

The Models tab is used to switch between the open models. A list of the open
models is displayed.

It provides buttons for managing the models:

Import – Opens a file selection dialogue so that another RDF/XML file can be
merged into the current model.

Export – Saves the current model as an RDF/XML file.

Insert – Opens a model selection dialogue and then merges the selected model
into the current model.

Save – Synchronises the model with its storage. (Not available for URLs or in-
memory models)

Save All – Synchronises all open models.

Clear - Removes all the data from the model. (Note that submodels are not
affected.)

Close – Closes the selected model.

 3.3.1 Transactions

For models that use a database as storage buttons are displayed that allow you
to use transactions. Normally changes to the model are only committed to the
storage when you press Save. However if you press Begin (Transaction) the
changes will be committed when you press Commit. Pressing Rollback will
back out the changes.

17 SASSY

User Guide for RDFGUI Program Components

This is mostly for testing the transaction mechanism which is of more use in
applications.

 3.3.2 Contexts

The models tab also provides the means for adding or removing contexts for a
model. This is only made available for those storage modes that support
contexts, which is memory, indexed and postgresql.

My basic rule for contexts is “Don’t bother, use a submodel.”

The problem with the contexts list is that it is refreshed whenever the model is
updated and subsequently only shows the contexts that are actually in the
model. Hence you can add a context to the list but it will quickly disappear.

The trick is to add the required contexts, select them, and then press “Apply
Contexts”. This stores them in the application so that they are available for the
Statement Dialog, for example.

18 SASSY

User Guide for RDFGUI Program Components

 3.4 Prefixes Tab

The URI is the fundamental mechanism for specifying the identity of a
resource in RDF. While it is fine for machines to use they are a bit of a pain for
us humans. I find that two similar URIs are very easy to confuse with each
other. They are also pain to have to type.

Hence RDF borrows the XML namespace concept to provide a shorthand
mechanism for URIs called a “prefix”. They are generally a short mnemonic
string ending in a colon (:). The part after the colon usually corresponds to the
part after the hash (#), or after the last slash(/), in a URI.

The librdfxx library predefines a set of prefixes. There are the well known
ones: rdf, rdfs, xsd, dc, and owl. It also defines rdfxx for some of the things we
need for this library. The catalog library will also introduce cat:. In addition
any model that is loaded can introduce additional prefixes either using the
namespace mechanism in an RDF/XML file, or as saved into the RDF by
librdfxx. URIs that don’t have a prefix are assigned one such as pfx1, pfx2.

The rdfxx library also saves the prefixes in the model. This is necessary for
models that are stored in databases since they do not have the namespace
clause of XML.

RDF (as does XML) includes the concept of a “base” namespace which is the
namespace that applies when none is specified. Some parts of RDFGUI rely on
the base being set, so it is good practice to always set it whenever you change
models.

Selecting an entry in the list of prefixes enables the buttons for editing a prefix
and for setting one as the base for the current model.

19 SASSY

User Guide for RDFGUI Program Components

 3.5 Statements Tab

Statements are the building blocks of an RDF database. This tab provides the
ability to view, search and edit the statements of a model.

Currently it displays the entire set of statements for a model. This is OK for
small models but will be problematic for very large models. Various means
will be provided later to filter the set that is displayed down to a more
manageable set.

 3.5.1 Statements Table

The table takes the entire tab space and shows three columns – the subject,
predicate and object. This is loaded as soon as the model is opened.

[If contexts are supported a fourth column is displayed to show the context of
each statement.]

The columns can be sorted by clicking the title, and a second [and subsequent]
click will reverse from ascending to descending [or vice versa].

When a cell is clicked it is highlighted, and [this is the interesting bit] so are all
the other instances of the cell contents. Sorting will bring them all together for
the column selected and the selections will be made visible.

This makes it possible to follow a chain of statements. First select a node in the
Subject column and then sort the list. Then select a cell in the Object column
that has the predicate you are interested in. Finally sort the Subject column to
see how your selected object is used as a subject. Repeat to follow the chain.

The reverse also works to follow a chain in the reverse direction.

The subject of a selected statement becomes the highlighted node in the Visual
Tab display [see below].

20 SASSY

User Guide for RDFGUI Program Components

 3.5.2 Statements Dialog

Double clicking a statement, or selecting Edit | Statement from the menu
brings up the Statement Dialogue.

At the top you can select from Create, Update or Delete. Delete removes the
statement, Update changes the selected statement, Create makes a new
statement.

Next is a drop down for contexts. “No Context “ is the default. The drop-down
will have the contexts you set using “Apply Contexts” in the Models Tab.

There are then three panels for the subject, predicate and object.

The Subject and Object panels have check boxes to indicate what type of node.
[Predicates are always resource nodes.]

Each panel has a Concept button for the predefined concepts, such as rdf:type.

Each panel has a Search button which brings up a panel where you can enter a
SPARQL query. You can then select a result and it gets pasted into the field
when you press OK.

A button at the bottom enables you to swap the Subject and Object, provided
the Object is not a Literal since a Subject cannot be a Literal.

21 SASSY

User Guide for RDFGUI Program Components

If Literal is selected for the Object a larger field is shown so you can enter any
amount of text. Drop-down menus for the language and data type are also
shown.

22 SASSY

User Guide for RDFGUI Program Components

 3.6 Visual Tab

The Visual tab provides a visual view of the model.

If there are more than 100 statements it changes to only show a view of the
model centred on the selected node. Selecting a node will cause the graph to be
redrawn around the selection. Since there are very few ways to influence how
GraphViz generates the diagram this may be a bit confusing as the model
changes shape and location.

You can drag the model, or use the mouse wheel to zoom.

23 SASSY

User Guide for RDFGUI Program Components

 3.7 Schema Tab

The Schema Tab is used to enter a schema. This is not strictly necessary for
RDF but the Forms part of RDFGUI uses it to automatically generate the data
entry forms. A schema can help you better organise your understanding of the
data.

Note that changes made on this tab are not applied to the current model until
Apply is pressed. Until then you can remove all the changes with the Revert
button. When Apply is pressed the model is updated which causes the model to
be redrawn on all of the tabs, including this one.

 3.7.1 Class Panel

The left (first) panel is for defining classes or types of things.

These can be organised into a hierarchy where rdfs:Resource is the most
general possible thing.

Pressing the Add button will create a dummy entry under Resource. Type in
your name for the new class and press Enter when completed. You can then
position the new class by dragging it within the tree while holding the Shift
key. [Without the shift key it will make a copy. Accidental copies can be
removed by selecting it and pressing the Delete button. Sadly, this will delete
all the instances, not just the one you selected.]

While dragging you will see either an outline around an existing entry or a line
between two entries. If you drop while there is an outline then the new class

24 SASSY

User Guide for RDFGUI Program Components

will be positioned as a child, otherwise it is positioned as a sibling.

Buttons at the bottom will bring up a dialogue box for specifying the classes
that are disjoint to the selected class, or classes that are equivalent. If two
classes are disjoint then it would be an error for an item to have both for its
types [however this is not enforced]. You would specify two classes as being
equivalent if you have imported two different schemas [vocabularies] that have
given different names to the same concept. Again, it would be an error for an
item to have both for its types [also not enforced].

On the left is the class tree. On the right is the list of classes which are disjoint
for “AsymmetricProperty”. You can add to the list by dragging from the tree to
the list. Items on the list can be removed by selecting them and pressing
Delete.

The “Equivalent” button works the same.

 3.7.2 Property Panel

The third panel is for defining properties, which are the predicates in the
statements. It may be subdivided into “object properties” at the top and “data
properties” at the bottom. Object properties are predicates that have resources
as their associated object, while data properties have a literal for their objects.

If you open an existing model that was made by some other system it probably
won’t have separate object and data properties. In this case the properties will
all be shown in a single tree.

The properties can be organised into hierarchies.

Entry and removal is similar to that used for classes.

At the bottom are button for Disjoint and Equivalent that work identically to
the ones for classes. In addition is a button for “Inverse” where you specify the
property that is the inverse of the selected object property.

25 SASSY

User Guide for RDFGUI Program Components

 3.7.3 Property Attributes Panel

The second panel allows you to enter some attributes for the properties.

[This panel works best with separate object and data property lists.]

Domain: This allows you to specify the domain that the property applies to.
The domain corresponds to the subject in a statement. You should specify the
most general class that applies. You can drag a class from the left panel into
this field.

Range: This allows you to specify the range that the property applies to. The
range corresponds to the objects that are resources in a statement. It is disabled
for data properties. You can drag a class from the left panel into this field.

Container: There is a drop-down menu where you can select a type of
container:

Group: Also known as Bag. This is for an unordered set, despite the
fact that it represented as a numbered list in RDF.

Sequence: This is for an ordered list. This is the RDF version of a
vector or array.

List: This is the RDF version of a linked list. It divides the list into a
head and rest recursively with a null to signify the end of the list.

Alternate: This is a more like a menu of allowable values. When
selected the you can press the Enums button and define the alternatives.

Literal: A drop-down menu allows you to select the data type for the selected
data property.

Under the Literal are seven check boxes where you can specify characteristics
for the selected property. Conflicting characteristics can be selected if you
want, but it is, obviously, a bad idea.

[RDFGUI does not enforce much consistency in the models. This enables you
to view models that may be inconsistent. It also allows you to create
inconsistent models so that you can create test data for other programs.]

The lower part of the panel is a list of properties for the currently selected class
[as specified by the domain of the properties].

26 SASSY

User Guide for RDFGUI Program Components

 3.7.4 Description Panel

The right hand panel displays the currently selected object and its type.

There are fields for entering a label, description and comment.

Label: The classes and properties generally have names the are in camel-case.
These are not entirely readable, so the label field can be used to give them
much more readable names.

Description: A single word can often be a bit ambiguous in its meaning, even
if its a phrase in camel-case. This field allows you to enter as much text as
necessary to describe the object. This description should be in the context of
the model’s data.

Comment: This allows you to add comments about the data that are not part
of the model. For example it might contain an argument for doing things
differently.

27 SASSY

User Guide for RDFGUI Program Components

 3.8 Forms

Selecting Edit | Edit… from the main menu or the Edit icon on the tool bar
starts the forms interface.

This interface consists of a series of dialogue boxes that allow you to enter
statements that conform to the schema.

This starts by displaying the list of classes that have been defined:

Selecting a class and pressing OK brings up a dialogue containing a list of the
existing individuals that have the class as their type:

From here you can either select New to create a new object, or select an entry
from the list and press OK to bring up a dialogue for the selected individual:

28 SASSY

User Guide for RDFGUI Program Components

The dialogues for an individual all have Name, Label and Description fields.
There is a Generate button that will append a sequence number to the string
entered in the name field. This is useful if the individual does not have a well
defined identity and you are not using blank nodes.

The example shown has buttons for the object properties defined for this class.
Note that the “hasVision” button is using the name of the object property,
however if the property had a label defined the label would be used instead.

Pressing the “sponsor” button, for example, will bring up a class dialogue for
Person as this is the range defined for the sponsor object property. It will be
populated from individuals that are sponsors of the project. Selecting from that
list brings up another dialogue:

29 SASSY

User Guide for RDFGUI Program Components

30 SASSY

User Guide for RDFGUI Tutorials

 4 Tutorials
This will evolve into proper tutorials over time. Initially it will contain some
examples of how actions in the user interface modify the model.

 4.1 Schema Examples

 4.1.1 Classes

In an empty model pressing “Apply” will create the following statements:

The blue colour just means it was the selected node.

It states that Resource has a type of Class. Resource is the name for the root of
the class hierarchy, which means it is the most general possible thing.

There are also two statements linking Property classes that will be covered
below.

If we add a class:

We get the following model:

Two statements have been added: One that says SomeClass has a type of
Class, and one that says it is a subclass of Resource.

31 SASSY

User Guide for RDFGUI Tutorials

Adding further classes will create these two statements saying the new class
has a type of class and saying which class it is a subclass of.

 4.1.2 Object Properties

You can have a hierarchy of properties.:

which results in this model:

We can embellish this a little by indicating that “isRelatedTo” is transitive and
symmetric and that “isParentOf” is the inverse of “isChildOf”:

32 SASSY

User Guide for RDFGUI Tutorials

Since two people cannot be their own parents or children we can further add
asymmetric and irreflexive characteristics.

 4.1.3 Data Properties

For properties that have a literal value as an object they are made to be of type
dataProperty:

To specify the data type for these properties we specify the range that the
object is allowed to have. The model will look similar to this:

33 SASSY

User Guide for RDFGUI Tutorials

 4.1.4 Domain and Range

For a property you can specify the domain (subject) and range (object) to
which it applies. This ties the property to these classes and needs to be done
with a bit of care as you may place unnecessary constraints on where the
property can be used. However, this only applies where these constraints are
enforced, which is not the case in RDFGUI.

For example with the following classes and properties:

 We can specify that “isDrivenBy” has a domain of Car and a range of Person.
The resulting model will look like:

The problem now is that if we introduce the Locomotive class we could not
use isDrivenBy even though it needs a driver. A solution is to introduce a super
class “Drivable” that has Car and Locomotive as subclasses and change the
domain of isDrivenBy accordingly. Remember that RDF uses multiple
inheritance so Car can still be a subclass of MotorVehicle, for example.

34 SASSY

User Guide for RDFGUI Tutorials

 4.1.5 Containers

Most of the container examples are in the next subsection of Forms examples.
However, “Alternate” is handled by the Schema Tab since it is more like a
menu of available options than a container.

To set up a container first set the range of the property to the type of object that
is the container. Then change the drop-down from “None” to the type you
require: Group [aka Bag], Sequence, Alternate or List.

If you select Alternate then the Enums button is enabled. Pressing this will
bring up a dialogue where you can enter the alternatives [these are resource
nodes].

35 SASSY

User Guide for RDFGUI Tutorials

 4.2 Forms Examples

36 SASSY

	1 Introduction
	1.1 Scope
	1.2 Overview
	1.3 Audience

	2 A Short Introduction to RDF
	2.1 RDF Graphs
	2.2 The Central Importance of the URI
	2.3 On the Limits of Universality
	2.4 Statements and Triples
	2.5 Literal Data Types
	2.6 Data Structures
	2.7 Schema
	2.8 Reification
	2.8.1 Queries and Rules

	2.9 Submodels and Contexts

	3 Program Components
	3.1 Menu and Toolbar
	3.2 Catalogue Tab
	3.2.1 Opening a Model
	3.2.2 Adding a Model
	3.2.3 Submodels

	3.3 Models Tab
	3.3.1 Transactions
	3.3.2 Contexts

	3.4 Prefixes Tab
	3.5 Statements Tab
	3.5.1 Statements Table
	3.5.2 Statements Dialog

	3.6 Visual Tab
	3.7 Schema Tab
	3.7.1 Class Panel
	3.7.2 Property Panel
	3.7.3 Property Attributes Panel
	3.7.4 Description Panel

	3.8 Forms

	4 Tutorials
	4.1 Schema Examples
	4.1.1 Classes
	4.1.2 Object Properties
	4.1.3 Data Properties
	4.1.4 Domain and Range
	4.1.5 Containers

	4.2 Forms Examples

