Building SASSY

Brenton

7 April 2022

1 Introduction

This is a step-by-step guide to building SASSY using code checked out of the
SourceForge (SF) repository.

Note that not everything is in the SF repository and you will need to contact
me for some parts. Also various things will need to be installed from your
distribution’s repository.

SASSY is not a single project. It is made up of a collection of separate, almost
independent projects that each need to be built. The order of building is
important as the projects may depend on earlier projects. Also scripts introduced
for one project may be called upon in subsequent projects.

This is a working document. It will be extended as new projects are added, and
modified if changes are found to be required for the build process.

On SourceForge there is a primary SASSY project!, which has very little at
the moment, and from there a set of subprojects that you can access. In each
subproject go to its Code page, and typically a trunk page under that. The exact
details will be provided below for each project. However these instructions do not
require you to visit SF in a web browser since the projects can be downloaded
from the command line.

Some of the projects on SourceForge have tar files of the source code. These
are probably out of date and are not refreshed very often since no one seems
interested in them. By using the Subversion? code instead you can get the latest
code moments after it is committed.

Important If any step in these instructions does not operate as expected please
contact me before attempting to proceed further.

Lhttps://sourceforge.net /projects/ocratato-sassy/
2Subversion is the version control system used for SASSY. Installation instructions are
provided below.

2 Preliminaries

2.1 Linux Distribution

These instructions are for the Fedora distribution. This is probably only impor-
tant for the repository commands and package names. If you really need to use
something other than Fedora please contact me.

2.2 Build Tools

We are using the Autotools set with the gece compiler (mostly with its g++
invocation.) These can be installed as follows:

sudo dnf group install ’C Development Tools and Libraries’
sudo dnf group install ’Development Tools’

2.3 The SASSY Directory

You will need a directory that will be the root of SASSY. Create a directory
with a name of your choosing. (I just use dev but you might want to use sassy.)

Typically the following should be sufficient, but you might want it elsewhere.

cd
mkdir sassy

Important The instructions here result in the programs and libraries being
installed in subdirectories under this directory rather /usr/local as is normal.
This avoids the need to use sudo or otherwise get root privileges. Some scripts
may assume this location.

2.4 The SASSY Environment Variable

There is one very important environment variable that is assumed to exist by
most scripts - SASSY. This should be the path to the directory created in the
previous step. Add the following to your $HOME/ .bash_profile file (with the
actual path you selected)

SASSY=$HOME/sassy
export SASSY

Log out, and back in again, and confirm that
cd $SASSY
takes you to the correct directory.

For the remainder of these instructions $SASSY will be used for the directory
path.

2.5 The Projects Directory

SASSY has a lot of subprojects and they are grouped into a directory. Create
the projects directory:

cd $SASSY
mkdir projects

2.6 Subversion

Use your system to install Subversion. It also has extensive documentation if
you want it.

sudo dnf install subversion
sudo dnf install subversion-api-docs

Subversion has many subcommands, such as checkout and update. Once you
have installed a project you can get it up to the latest version with just

svn update

We are now ready to start getting and building the subprojects.

3 Common Facilities Infrastructure

This is a library of useful bits of code. There is also included in the project the
Common Development Infrastructure which includes support for testing.

3.1 Fetch the Code
First ensure you are in the projects directory:
cd $SASSY/projects

Note The following commands are for those that are just building the system
for testing and evaluation. If you are going to do development that will involve
committing changes please contact me.

Checkout the code with the following command:
svn checkout svn://svn.code.sf.net/p/ocratato-sassy/cfi/code/trunk/cfi/ cfi

Note that it consists of svn and its checkout subcommand, followed by the
URL to the SourceForge repository, and lastly the name of the directory to
create under $SASSY/projects.

You should confirm that $SASSY/projects/cfi has files such as README,
configure.ac, Makefile.am, etc. and a src directory containing subdirectories
for its constituent parts. Feel free to peruse the code, especially if you are
intending to assist with development.

3.2 Prerequisites

The cfi modules depend on XML and for this we use 1ibxml2. Use your system
to install the development version, for example:

sudo dnf install libxml2-devel

3.3 Initialise the Project
3.3.1 Script setup.sh

The repository does not include many files that are required to build the system.
Fortunately there are tools to create these files and I have a script to run them
all.

Contact me for a copy of setup.sh. Place it in $SASSY/projects (for use on
other projects), and ensure that it is executable and then run it to set up the
project. For example:

cp setup.sh $SASSY/projects
cd $SASSY/projects

chmod +x setup.sh

cd cfi

../setup.sh

3.3.2 Build Directory

We use VPATH builds as these keep the source from being cluttered up with
object files, libraries, and all the other guff the build process creates.

Create a build directory:

cd $SASSY/projects/cfi
mkdir build

3.4 Configuring

This checks the state of the system, that prerequisites are installed and creates
the Makefiles and build subdirectories.

As mentioned previously we want the executables, libraries, etc. installed under
$SASSY, hence we set a prefix for the configure step:

cd $SASSY/projects/cfi
cd build
../configure --prefix=$SASSY

3.5 Building

You can just use the make command, but I like to capture the output into a log
file for closer examination if something goes wrong.

Create a small script and place it your bin directory:

cat > $HOME/bin/mk <<EQOF
#!/bin/bash
make &> make.log
if [$7 -ne 0]
then
vi make.log
fi
EOF

(Of course you can use something other than vi if you wish.)
To build all you need is

cd $SASSY/projects/cfi/build
mk

3.6 Testing

The CFI module includes quite a bit of testing. You should probably run it to
ensure things are set up OK.

cd $SASSY/projects/cfi/build
make check

Note that one test is of the timeout handling of the test harness itself, so it
may appear to freeze for about 10 seconds.

3.7 Installing

To copy the programs, libraries, include files, etc. to their proper places;

cd $SASSY/projects/cfi/build
make install

This will create various directories under $SASSY, such as bin, 1ib, include
and share. You should confirm that this has been done.

4 The RDF C++ Library

This project aims to wrap librdf, the Redland libraries, in C++. It provides
librdfxx for access to RDF data stores.

4.1 Fetch the Code

First ensure you are in the projects directory:

cd $SASSY/projects

Checkout the code with the following command:

svn checkout svn://svn.code.sf.net/p/ocratato-sassy/rdfxx/code/trunk/rdfxx/ rdfxx

You should confirm that $SASSY/projects/rdfxx has the expected files.

4.2 Prerequisites
4.2.1 Redland

The primary dependency is the C RDF library, 1ibrdf which includes 1ibrasqal
and libraptor. Use your system to install the development version:

sudo dnf install redland-devel
sudo dnf install redland-pgsql

4.2.2 PostgreSQL

The intention is to use PostgreSQL for storage of most RDF. So far this has not
been important, but the rdfxx library requires it. You will need both the server
and client.

Note These notes are a bit thin. It would help if you could take careful notes of
your steps so these notes can be made a bit more detailed.

For the client side install postgresql package, and also its jdbc interface?,
sudo dnf install postgresql postgresql-jdbc

For the server the details are a bit sketchy, but PostgreSQL has a lot of good
documentation to help you get it working properly. For now we don’t need much,
but eventually it will be important.

On my system I have the database server on a different virtual machine, but
this is not necessary.

Install postgresql-server.

sudo dnf install postgresql-server

3This should be confirmed as it might have come in with redland-pgsql.

This will try to use /var/lib/pgsql/data to store the database. In my case I
wanted it elsewhere so I created a bind based mount from /data/database to
/var/1ib/pgsql/data.

I also found it necessary to use chcon to set the context for the new data directory,
otherwise systemd is unable to start the database.

The database then needs to be initialised:

su - postgres
initdb -D /var/lib/pgsql/data

I also enabled other machines to connect by adding ‘*’ as a listen address
in postgresql.conf; enabled other users to connect by adding a line to
pg_hba.conf; and enabled postgresql service in the firewall.

Confirmation To verify a setup that will work for our project you should be
able to log in to the database as yourself using one of the following commands:

psql
psql -h <hostname>

The psql command starts a shell on the database. This can be exited with \q

4.3 Initialise the Project
4.3.1 Script setup.sh

Use the setup.sh script that you got for the CFI project to initialise the autotools
files:

cd $SASSY/projects/rdfxx
../setup.sh

4.3.2 Build Directory
Create a build directory:

cd $SASSY/projects/rdfxx
mkdir build

4.4 Configuring

This checks the state of the system, that prerequisites are installed and creates
the Makefiles and build subdirectories.

As mentioned above we want the executables, libraries, etc. installed under
$SASSY, hence we set a prefix for the configure step:

cd $SASSY/projects/rdfxx
cd build
../configure --prefix=$SASSY

4.5 Building

You can just use the make command, but I like to capture the output into a log
file for closer examination if something goes wrong, for example, using the script
we created previously:

cd $SASSY/projects/rdfxx/build
mk

4.6 Ontologies
Create a directory for storing RDF files:

cd $SASSY
mkdir ontologies

4.7 Testing

In order to test rdfxx you will need the sassy.xml configuration file. Please
contact me for a copy. You should keep a backup of this file as something seems
to clobber it%. Install it in the share directory:

cp sassy.xml $SASSY/share/sassy/
Run the tests for rdfxx. This includes a test of connectivity to PostgreSQL.

cd $SASSY/projects/rdfxx/build
make check

4.8 Installing
To copy the programs, libraries, include files, etc. to their proper places;

cd $SASSY/projects/rdfxx/build
make install

41 suspect that building CFI is the culprit.

5 The RDFGUI Program

This program allows you to view and edit RDF models. For a better description
see its user manual.

5.1 Fetch the Code

First ensure you are in the projects directory.
cd $SASSY/projects

Checkout the code with the following command:

svn checkout svn://svn.code.sf.net/p/ocratato-sassy/rdfgui/code/trunk/rdfgui rdfgui

5.2 Prerequisites
You will need Qt5 including the SVG module which is usually a separate package.
sudo dnf install gt5-devel qt5-qtsvg-devel

You will also need the Graphviz package. Currently we only use the dot program
but this might change if we can get some time to extend the visualisation
component.

sudo dnf install graphviz

5.3 Initialise the Project
5.3.1 Script setup.sh

Use the setup.sh script that you got for the CFI project to initialise the autotools
files:

cd $SASSY/projects/rdfgui
../setup.sh

5.3.2 Build Directory
Create a build directory:

cd $SASSY/projects/rdfgui
mkdir build

5.4 Configuring

This checks the state of the system, that prerequisites are installed and creates
the Makefiles and build subdirectories.

cd $SASSY/projects/rdfgui
cd build
../configure --prefix=$SASSY

10

5.5 Building

You can just use the make command, but I like to capture the output into a log
file for closer examination if something goes wrong, for example, using the mk
script:

cd $SASSY/projects/rdfgui/build
mk

5.6 Installing
To copy the programs, libraries, include files, etc. to their proper places;

cd $SASSY/projects/rdfgui/build
make install

Create a desktop file, rdfgui.desktop in ‘$SHOME/.local/share/applications’
with the following contents:

[Desktop Entry]

Comment=A program for displaying and manipulating RDF data.
Terminal=false

Name=RDF-Gui

Exec=/home/nfs/sassy/dev/bin/rdfgui

Type=Application
Icon=/home/nfs/sassy/dev/share/sassy/logo3.png
Categories=TextTools;

Adjust the Exec and Icon paths to suit your system. Contact me for a copy of
the logo file.

5.7 Documentation
Create a directory for documentation and a subdir for manuals.

cd $SASSY
mkdir -p docs/manuals

Contact me for a copy of RDFGUI manual.

5.8 Ontologies

I have found it useful to construct a few RDF models for testing and general
messing about. From the Catalogue tab of rdfgui enter a name for the model
in the New Model section, select the type of staorage it will use, and press the
New button. Fill in the details (don’t forget the description) and add it to the
catalogue.

11

5.8.1 Core Schema

Contact me for a copy of the schema that has the core RDF structures. Copy it
into the ontologies directory and add it into the catalogue.

12

6 Natural Language Generator

This program takes an RDF grammar tree and creates an English sentence (or
phrase).

6.1 Fetch the Code

First ensure you are in the projects directory:

cd $SASSY/projects

Checkout the code with the following command

svn checkout svn://svn.code.sf.net/p/ocratato-sassy/nlg/code/trunk nlg

Note that the command doesn’t have “nlg” at the end of the URL. I messed up
the upload on this one, but it doesn’t matter much.

6.2 Prerequisites

None, apart from what has been already built and installed.

6.3 Initialise the Project
6.3.1 Script setup.sh

Use the setup.sh script that you got for the CFI project to initialise the autotools
files:

cd $SASSY/projects/nlg
../setup.sh

6.3.2 Build Directory
Create a build directory:

cd $SASSY/projects/nlg
mkdir build

6.4 Configuring

This checks the state of the system, that prerequisites are installed and creates
the Makefiles and build subdirectories.

cd $SASSY/projects/nlg
cd build
../configure --prefix=$SASSY

13

6.5 Building
Just use make, or the script from previous projects:

cd $SASSY/projects/nlg/build
mk

6.6 Installing

To copy the programs, libraries, include files, etc. to their proper places;
cd $SASSY/projects/nlg/build
make install

6.7 Ontologies

Contact me for copies of the NLG ontologies.

Copy them into them into $SASSY /ontologies and use rdfgui to add them to
your catalogue.

14

7 Document Generator

This takes an RDF description of a document and creates a Markdown version.
The Pandoc program is then used convert the Markdown into PDF.

7.1 Fetch the Code

It hasn’t been installed into SourceForge yet, so contact me if you want this
module.

7.2 Prerequisites

While not technically a prerequisite that is necessary for the building of the
document generator, the Pandoc program is needed to get anything useful.

Use your system to install Pandoc:

sudo dnf install pandoc

7.3 Initialise the Project
7.3.1 Script setup.sh

Use the setup.sh script that you got for the CFI project to initialise the autotools
files:

cd $SASSY/projects/docgen
../setup.sh

7.3.2 Build Directory
Create a build directory:

cd $SASSY/projects/docgen
mkdir build

7.4 Configuring

This checks the state of the system, that prerequisites are installed and creates
the Makefiles and build subdirectories.

cd $SASSY/projects/docgen
cd build
../configure --prefix=$SASSY

7.5 Building

Just use make, or the script from previous projects:

cd $SASSY/projects/docgen/build
mk

15

7.6 Installing
To copy the programs, libraries, include files, etc. to their proper places;

cd $SASSY/projects/docgen/build
make install

7.7 Ontologies

Contact me for copies of the document ontologies.

Copy them into them into $SASSY /ontologies and use rdfgui to add them to
your catalogue.

16

8 Reasoner

This project integrates the FaCT++ inference engine into SASSY.

8.1 Create Directory

For the reasoner the structure of the directory is a little different since we have
to build the prerequisite library.

cd $SASSY/projects
mkdir -p fact++/rdf-iface

8.2 Prerequisites
You will need to get and build FaCT++.

Get the source zip file from https://bitbucket.org/dtsarkov/factplusplus/downloads/
The file is FaCTpp-src-v1.6.5.zip.

The zip file contains the core library plus a lot of interfaces we don’t need. Also
it is set up for MAC OS and there is a missing include file in one of the source
files. To fix all of this I have created a patch that can be applied.

Contact me for a copy of the patch, fact.patch.

cp FaCTpp-src-v1.6.5.zip $SASSY/projects/fact++
cp fact.patch $SASSY/projects/fact++

cd $SASSY/projects/fact++

unzip FaCTpp-src-v1.6.5.zip

patch -p0 < fact.patch

cd FaCT++-src-v1.6.5/src

cmake

make

8.3 Fetch the Code

It hasn’t been installed into SourceForge yet, so contact me if you want this
module.

8.4 Initialise the Project
8.4.1 Script setup.sh

Use the setup.sh script that you got for the CFI project to initialise the autotools
files:

cd $SASSY/projects/fact++/rdf-iface
../../setup.sh

17

8.4.2 Build Directory
Create a build directory:

cd $SASSY/projects/fact++/rdf-iface
mkdir build

8.5 Configuring

This checks the state of the system, that prerequisites are installed and creates
the Makefiles and build subdirectories.

cd $SASSY/projects/fact++/rdf-iface
cd build
../configure --prefix=$SASSY

8.6 Building

Just use make, or the script from previous projects:

cd $SASSY/projects/fact++/rdf-iface/build
mk

8.7 Installing
To copy the programs, libraries, include files, etc. to their proper places;

cd $SASSY/projects/fact++/rdf-iface/build
make install

18

9 Rule Engine

Rule engines are effectively an interpreted language for modifying RDF models.
RDF data is found using SPARQL and can be used to create new statements in
the model.

At the time of writing this project is still under development, but it has been
stored in SourceForge’s repository.

9.1 Fetch the Code

First ensure you are in the projects directory:
cd $SASSY/projects

Checkout the code with the following command

svn checkout svn://svn.code.sf.net/p/ocratato-sassy/reng/code/trunk/rule-engine \
rule-eng

9.2 Prerequisites

For this project we use a compiler compiler called SableCC. Specifically we need
a version that has been modified to generate languages beside Java.

9.2.1 Java

The SableCC program is a Java program, so we need Java installed. It is probably
already installed (we only need the headless version), but if not then use your
system to install it.

sudo dnf install java

9.2.2 SableCC Altgen

Get the zip file from http://www.mare.ee/indrek/sablecc/. The file is
sablecc-3-beta.3.altgen.20041114.zip®

We will create a project directory for SableCC so we don’t end up with Java
stuff in the Rule Engine project.

cd $SASSY/projects

mkdir sablecc

cd $HOME/Downloads

cp sablecc-3-beta.3.altgen.20041114.zip $SASSY/projects/sablecc/
cd $SASSY/projects/sablecc

unzip sablecc-3-beta.3.altgen.20041114.zip

51 seem to have built my version against an older version of SableCC-Altgen so there might
be some updates coming.

19

No further action is required since the zip file contains a Java jar file of sablecc
which will be referenced by the rule engine build.

9.3 Initialise the Project
9.3.1 Script setup.sh

Use the setup.sh script that you got for the CFI project to initialise the autotools
files:

cd $SASSY/projects/rule-eng/
../setup.sh

9.3.2 Build Directory
Create a build directory:

cd $SASSY/projects/rule-eng/
mkdir build

9.4 Configuring

This checks the state of the system, that prerequisites are installed and creates
the Makefiles and build subdirectories.

cd $SASSY/projects/rule-eng/
cd build
../configure --prefix=$SASSY

9.5 Building

Just use make, or the script from previous projects:

cd $SASSY/projects/rule-eng/build
mk

9.6 Installing
To copy the programs, libraries, include files, etc. to their proper places;

cd $SASSY/projects/rule-eng/build
make install

20

10 View Your Mind (VYM)

This is an external program for doing mind maps. It is being investigated as a
possible front end for SASSY.

10.1 Fetch the Code
10.1.1 Create Project
First create a project directory:

cd $SASSY/projects
mkdir vym

10.1.2 Download

Get the code from https://github.com/insilmaril/vym/tree/maintained
where you will see a Code menu. Get the zip fileS.

Copy the zip file into $SASSY /projects/vim and run unzip on it.

10.2 Building
Build he project by cd’ing into the unzipped directory then

cmake

make

make install
make clean

This will install it into /usr/bin which is not ideal for SASSY, but will do for
now.

10.3 Installation

Create desktop file, vym.desktop containing

[Desktop Entry]

Comment=A program for creating mind maps.
Terminal=false

Name=VYM

Exec=/usr/bin/vym

Type=Application
MimeType=application/x-vym
Icon=//usr/share/vym/icons/vym.png
Categories=Utility;TextTools;

61 should modify my build to use the maintained version rather than the develop that
seems to be the default.

21

and copy it into SHOME/ local/share/applications. This will create an entry for
it in the system menu.

22

11 Things To Be Done

This is some notes to me about things that need be fixed for the build process.

11.1 Tools, Configuration and Scripts

Scripts such as setup.sh, svn-check.sh should be committed to the SASSY master
project. Similarly with sassy.xml.

11.2 Ontologies

Add the schema ontologies into version control. Add test ontologies into version
control for the related projects.

11.3 Projects into Version Control

11.3.1 Docgen

The docgen program and associated scripts needs to be added to SourceForge.

11.3.2 Reasoner

The reasoner interface code and the fact.patch file need to be added to Source-
Forge

11.4 Documentation
Convert docs to Markdown format and add to SourceForge version control.

Papers that have been downloaded should be listed in a bibliography so that
others can download them.

23

	Introduction
	Preliminaries
	Linux Distribution
	Build Tools
	The SASSY Directory
	The SASSY Environment Variable
	The Projects Directory
	Subversion

	Common Facilities Infrastructure
	Fetch the Code
	Prerequisites
	Initialise the Project
	Script setup.sh
	Build Directory

	Configuring
	Building
	Testing
	Installing

	The RDF C++ Library
	Fetch the Code
	Prerequisites
	Redland
	PostgreSQL

	Initialise the Project
	Script setup.sh
	Build Directory

	Configuring
	Building
	Ontologies
	Testing
	Installing

	The RDFGUI Program
	Fetch the Code
	Prerequisites
	Initialise the Project
	Script setup.sh
	Build Directory

	Configuring
	Building
	Installing
	Documentation
	Ontologies
	Core Schema

	Natural Language Generator
	Fetch the Code
	Prerequisites
	Initialise the Project
	Script setup.sh
	Build Directory

	Configuring
	Building
	Installing
	Ontologies

	Document Generator
	Fetch the Code
	Prerequisites
	Initialise the Project
	Script setup.sh
	Build Directory

	Configuring
	Building
	Installing
	Ontologies

	Reasoner
	Create Directory
	Prerequisites
	Fetch the Code
	Initialise the Project
	Script setup.sh
	Build Directory

	Configuring
	Building
	Installing

	Rule Engine
	Fetch the Code
	Prerequisites
	Java
	SableCC Altgen

	Initialise the Project
	Script setup.sh
	Build Directory

	Configuring
	Building
	Installing

	View Your Mind (VYM)
	Fetch the Code
	Create Project
	Download

	Building
	Installation

	Things To Be Done
	Tools, Configuration and Scripts
	Ontologies
	Projects into Version Control
	Docgen
	Reasoner

	Documentation

