SOFTWARE ARCHITECTURE SYSTEM
ARCHITECTURE

Software Architecture System

Revision History
Generated version Brenton Ross Sept. 2011

Copyright

Copyright 2009 - 2011 Brenton Ross

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.

Contents

1 Conceptual Model 1
1.1 Requirements o e e 1
1.1.1 Functional Requirements 1
1.1.2 Environmental Requirements 7
1.1.3 Quality Requirements oL 7
1.2 Tactics o v o o e e e 28
1.2.1 Deployment Tactics 28
1.2.2 Development Tactic o 29
1.2.3 Transaction L e e e 38
1.2.4 Modifiability Tactics 38
1.2.5 Defer Binding 39
1.2.6 Object Oriented Design 40
1.2.7 Performance Monitoring o o 41
1.2.8 Introduce Concurrency o v 42
1.2.9 Single Thread L 45
1.2.10 Usability Tactics 45
1.2.11 Task Oriented o . 46
1.2.12 Use COTS Products o it 47
1.2.13 Process Tactic 48
1.2.14 Reviews oo o e 51
1.2.15 Spiral Development L o 53
1.2.16 Runtime Tactic Lo 53
1.2.17 Multiple Processes o o 54
1.3 Concept Modules 56
1.3.1 Administration Manager Lo L. 56
1.3.2 Browser 56
1.3.3 Configuration Manager 57
1.3.4 Document Description Language Interpreter 57
1.3.5 Document Descrition Language Parser 58
1.3.6 Diagram Modeller oo 58
1.3.7 Document Formatter Lo oL 59
1.3.8 Document Generator o 59
1.3.9 Document Modeller 60
1.3.10 Log Event Notifier 61
1.3.11 Logger o o o e e e 61
1.3.12 OWL Database 62
1.313 OWL Gui . . .« o oo o 62
1.3.14 OWL Interface 63
1.3.15 Operating System 64
1.3.16 OWL Viewer i e 64
1.3.17 PDF Creator e e 65
1.3.18 PDF Viewer. e e 65
1.3.19 SASSY e e 66
1.3.20 SASSY User Interface 66
1.3.21 Trace Event Generator 67
1.3.22 Version Control e 67
1.3.23 Ontology o o 68
1.3.24 Project Ontology« . . 68

1.3.25 Architecture Ontology 69
1.3.26 Configuration Ontology 69
1.3.27 Dictionary Ontology« .. . 70
1.3.28 Requirements Ontology 70
1.3.29 Traceability Ontology 71
1.3.30 Reference Ontology« .. 71
1.3.31 Design Pattern Ontology 71
1.3.32 Development Ontology 72
1.3.33 Products Ontology 72
1.3.34 Quality Attribute Ontology 73
1.3.35 Tactics Ontology o 73
1.3.36 View Ontology o e 74
1.4 Methodology e 75
1.4.1 SASSY Plan oo 75
1.4.2 Process o e 76
1.4.3 Activity 76
2 Logical Model 96
2.1 Implementation Modules L o 96
2.1.1 Fedora Linux e 96
21.2 ICE . . . e 96
2.1.3 Subversion L 97
2.1.4 Architecture Ontology L 97
2.1.5 Development Ontology 98
2.1.6 Dictionary Ontology 98
2.1.7 Quality Attribute Ontology 99
2.1.8 Requirements Ontology 99
2.1.9 SASSY Ontology« o o oo 99
2.1.10 Tactics Ontology o oo it 100
2.1.11 ICE Server o oo i 100
2.1.12 OWLAPIo 101
2113 ICE Client« . oo o 101
2.1.14 Log Stream e e 102
2.1.15 SASSY Diagram Modeller 102
2.1.16 SASSY Document Formatter 102
2.1.17 SASSY Document Modeller 104
2.1.18 Configuration Manager 104
2.1.19 Firefox o L o 104
2.1.20 GraphViz o 105
2.1.21 Java Virtual Machine00, 105
2.1.22 Jatex oL 105
2.1.23 Process Manager e 106
2.1.24 Protege 106
2.1.25 Software Manager e 107
2.1.26 dvipdfm 107
2.1.27 evince e e e e 108
2.1.28 icedowl e 108
2.1.29 owl-viewo e 108
2.1.30 saDocGen 109
2.1.31 SASSY GUI. e 109

ii

2.1.32 sallogger L 110

2.1.33 Data Manager e 110
2.1.34 Qb . . e 111

2.2 Interface e 112
2.2.1 External Interface e 112
2.2.2 System Interface 113
2.2.3 Component Interface 0oL 113
2.2.4 Product Interface 119

2.3 DataFlow e 134
2.3.1 Architecture Inputo oo 134
2.3.2 Document Generation 134

2.4 Use Case e 136
2.4.1 Document Generation 136

2.5 Quality Attribute Scenarios L 137
2.5.1 Computational Scenarios oL 137
2.5.2 Deployment Scenarioso o 138
2.5.3 Process Scenarios e e e e 138
2.5.4 Software Scenarios 138
2.5.5 Specification Scenarios L. 139

2.6 SASSY Plan. e 141
2.6.1 Increment O e 141
2.6.2 Increment 1 e 141
2.6.3 Increment 2 142
2.6.4 Increment 3 142
2.6.5 Increment 4 e e e e 142
2.6.6 Increment b e 142
2.6.7 Increment 6 142
2.6.8 Increment 7 142
2.6.9 Increment 8 143

2.7 Team VIEW e e e 144
2.7.1 System Administratoro 144
2.7.2 Analyst 144
2.7.3 Architect 144
2.7.4 Database Administrator 144
2.7.5 Designero 144
2.7.6 Developer 144
2.7.7 Network Engineer o o 145
2.7.8 Project Manager L 145
2.7.9 Tester e e 145

3 Physical Model 146
3.1 Execution Modules e 146
3.2 Computer VIew o e 148
3.2.1 Application Server 148
3.2.2 Database Server e 148
3.2.3 Logging Server e 148
3.24 User Desk Top e 148
3.2.5 Web Server 148

3.3 License View e e e 149
3.4 Network View e 153

il

List of Figures

O~ O Ui Wi+

S S S S N NN N ¢ IS I SC I SC RN GC BN SC RN GC RN SC NG RNGC I NO R NC R NC R SO R YO NC R O T O T NCJ N G S G o G S G T G G g e
O TN E WL, OO TN ERNRD—,DOD TN EWN — OO0~ U W — O

Administration Manager oL o 56
Browser e 57
Configuration Manager e 57
Document Description Language Interpreter 58
Document Descrition Language Parser 58
Diagram Modeller L L 59
Document Formatter L Lo L 60
Document Generator oL L 60
Document Modeller 61
Log Event Notifier 62
Logger o 62
OWL Database o 63
OWL Guio 63
OWL Interface o . o 64
Operating System oL 65
OWL Viewer it e e 65
PDF Creator e 66
PDF Viewer o e 66
SASSY . . . 67
SASSY User Interface L 67
Trace Event Generator o 68
Version Control L 68
Ontology e 69
Project Ontology e 69
Architecture Ontology 69
Configuration Ontology e 70
Dictionary Ontology« . . . o e 70
Requirements Ontology 71
Traceability Ontology 71
Reference Ontology 72
Design Pattern Ontology 72
Development Ontology 73
Products Ontology« . . e 73
Quality Attribute Ontology e
Tactics Ontology« . . o 74
View Ontology o 74
Fedora Linux e 96
ICE . . e 97
SUbVersion 97
Architecture Ontology o 98
Development Ontology e 98
Dictionary Ontology o e 99
Quality Attribute Ontology L o 99
Requirements Ontology L 100
SASSY Ontology o e 100
Tactics Ontology« . . 101
ICE Server e 101
OWLAPTL . . . e 102

iv

49
50
o1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

ICE Client o o o o e e e e e e e e e e e e e e e e e 102

Log Stream oL e 103
SASSY Diagram Modeller 103
SASSY Document Formatter 103
SASSY Document Modeller 104
Configuration Manager 104
Firefox e 105
GraphViz e 105
Java Virtual Machine o 106
latex . . . o e 106
Process Manager L L e 107
Protege L 107
Software Manager e 108
dvipdfmo 108
EVINCE .« v v v i e e e e e e e e e e e 108
icedowl. Lo e 109
owl-view . . .o 109
saDocGen 110
SASSY GUI oo 110
sallogger oL e 110
Data Manager e e e 111
Qb o 111
IF62 SASSY User Interface 112
IF63 Document Output e 112
IF64 Protege User Interface 113
IF32 OwlView OWL e 113
IF33 Diagram Modeller OWL 113
IF34 Document Modeller OWL 114
IF35 Data Manager Log oL 114
IF36 Configuration Manager Log 115
IF37ICE Client Log o oo e 115
IF38 ICE Server Log« . . o i i 115
IF39 OwlView Log 116
IF40 Process Manager Log L. 116
IF41 Software Manager Log o .. 116
IF42 Diagram Modeller Log oL 117
IF43 Document Modeller Log 117
IF44 Document Generator Log 118
IF45 GUILOZ . .« v v o e e e e e e e e e e e e e 118
IF48 Log Message o o 118
IF56 GUI to Configuration Manager 119
IF57 Configuration Manager to GUI 119
IF01 File Event Notification 119
TF02 Networking o e 120
IF03 Java File Handling 120
IF04 Java Networking 120
IF05 Java Graphicso oL 121
IFO6 Java IO o o 121
IFO7 Process Events o o 121
TF08 Qt Graphics e 122

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

IFO9 Qt IO . . . o o 122

IF10 Software Manager File Handling 123
IF11 ICE Remote Procedure Call 123
IF12 Configuration Manager SVN Pipe 123
IF13 Protege Architecture Read 123
IF14 Protege Development Owl Read 124
IF15 Protege QA Read o o 124
IF16 Protege Dictionary Read 124
IF17 Protege Requirements Read 125
IF18 Protege SASSY Read o 125
IF19 Protege Tactics Read L. 125
IF20 Protege Dictionary Write L. 126
IF21 Protege Requirements Write 126
IF22 Protege Sassy Write 126
IF23 OWLAPI Architecture Read 127
[F24 OWLAPI Development Read 127
IF25 OWLAPTI QA Read o oo i e 127
IF26 OWLAPI Dictionary Read, 128
IF27 OWLAPI Requirements Read 128
IF28 OWLAPI Sassy Read o .. 128
IF29 OWLAPI Tactics Read o o ... 129
IF30 OWLAPI Requirements Write. 129
IF31 OWLAPIICE Server o ittt 129
IF49 GraphViz Dot File 0 o oL 129
IF50 GraphViz SVG o 130
IF51 LaTeX . . . o o o e e e 130
IF52 LaTeX DVI o oo o e e 131
IF53 Document PDF o .. 131
IF54 Configuration Manager Graphics 131
IF55 Gui Graphics 132
IF58 GUI to Firefox o e 132
IF59 GraphViz Dot File o o 132
IF60 OwlView Graphics i 132
IF61 GraphViz SVG File 133
Architecture Inputo 134
Document Generation Lo 134

vi

1 CONCEPTUAL MODEL

1 Conceptual Model

A conceptual architecture has a focus on identification of components and allocation of
responsibilities to components.

1.1 Requirements

The basic requirement is to be able to generate the software architecture documents from
an ontology which captures the high level design.

1.1.1 Functional Requirements

These are the requirements which determine what the system is supposed to do.

R1 - Mandatory: The system shall allow the user to generate architecture documents
from specified viewpoints based on the software architecture ontologies.

This requirement is addressed by the following tactics:

Build Architecture Model: Build an internal representation of the architecture
based on the data drawn from the ontology. This is a functional tactic that
directly relates the requirement for generating architectural views to the re-
sponsibility of creating those views.

Build Diagrams: Build diagrams from the ontology data. These provide the
views of the architecture in a graphical form which some readers might find
more useful. This is a functional tactic that relates the requirement to provide
views of the architecture to the responsibility for creating diagrams of those
views.

Collect Architecture Text: Collect the text for the architecture documentation.
This is a functional tactic that relates the requirement for creating an archi-
tecture document to the responsibility of collecting the text from the ontology
database.

Generate Architecture LaTeX: Generate the LaTeX for the architecture docu-
ment from the internal model. By using LaTeX as the intermediate language
for the generated document we can leverage its typesetting capability to pro-
duce a quality document with minimal development costs.

Generate PDF: Generate the PDF version from the LaTeX version of the docu-
ment. This functional tactic relates the requirements for PDF documents to
the responsibility of creating it.

Interpreted Language: An interpreter can allow the system to defer binding
function calls until run-time. It allows the user or administrator of the system
to modify and extend its behavior.

R2 - Very Important: The system shall allow the user to generate a Data Dictionary
document based on the corresponding ontology.

1.1 Requirements 1 CONCEPTUAL MODEL

This requirement is addressed by the following tactics:

Build Dictionary Model: Build an internal representation of the data dictio-
nary. This is a functional tactic that relates the requirement for a data
dictionary to the responsibility of creating one.

Generate Data Dictionary LaTeX: Generate the LaTeX for the data dictio-
nary document from the internal model. By using LaTeX as the intermediate
language for the generated document we can leverage its typesetting capabil-
ity to produce a quality document with minimal development costs.

Generate PDF: Generate the PDF version from the LaTeX version of the docu-
ment. This functional tactic relates the requirements for PDF documents to
the responsibility of creating it.

R3 - Very Important: The system shall allow the user to generate a requirements docu-
ment based on the corresponding ontology.

This requirement is addressed by the following tactics:

Build Requirements Model: Build an internal representation of the require-
ments for the proposed system. This is a functional tactic that relates the
requirement for producing a requirement listing to the responsibility of gen-
erating one.

Generate PDF: Generate the PDF version from the LaTeX version of the docu-
ment. This functional tactic relates the requirements for PDF documents to
the responsibility of creating it.

Generate Requirements LaTeX: Generate the LaTeX for the requirements doc-
ument from the internal model. By using LaTeX as the intermediate language
for the generated document we can leverage its typesetting capability to pro-
duce a quality document with minimal development costs.

R4 - Very Important: The system shall allow the user to publish a listing of all known
quality attributes with sufficient definitions to allow the user to determine how important
each one is for their specific project.

This requirement is addressed by the following tactics:

Build Quality Attribute Model: Build an internal representation of the qual-
ity attribute data. This is a functional tactic that relates the requirement for
producing a quality attribute listing to the responsibility of generating one.

Generate PDF: Generate the PDF version from the LaTeX version of the docu-
ment. This functional tactic relates the requirements for PDF documents to
the responsibility of creating it.

Generate Quality Attribute LaTeX: Generate the LaTeX for the quality at-
tribute document from the internal model. By using LaTeX as the interme-
diate language for the generated document we can leverage its typesetting
capability to produce a quality document with minimal development costs.

1 CONCEPTUAL MODEL 1.1 Requirements

R5 - Mandatory: The system shall allow the user to build an ontology that captures the
architecture of the system.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R6 - Mandatory: The system shall allow the user to construct an ontology that captures
the configuration of the software, hardware, documentation and other components of the
system.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R7 - Very Important: The system shall allow the user to build an ontology holding the
definitions of the project specific terminology.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R11 - Important: The system shall provide the ability to automatically assign unique
identifiers for each requirement.

This requirement is addressed by the following tactics:

Requirements User Interface: A specialised user interface component that al-
lows the user to enter or edit the user requirements will be included in SASSY.

R8 - Very Important: The system shall allow the user to build an ontology of require-
ments for the system to be developed.

1.1 Requirements 1 CONCEPTUAL MODEL

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R9 - Important: The system shall allow the user to build an ontology that captures how
the requirements are expressed throughout the design and implementation.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R10 - Important: The system shall include an ontology of known architectural design
patterns.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R12 - Very Important: The system shall show the relationships between the design
patterns and the achitectural tactics that they implement.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R13 - Important: The system shall include an ontology of software products that can be
used in the development or target product.

1 CONCEPTUAL MODEL 1.1 Requirements

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R14 - Important: The product ontology shall include references to the tactics that the
products implement.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R15 - Mandatory: The system shall allow the quality attributes to be classified according
to various quality models.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R16 - Very Important: The system shall include an ontology of all quality attributes
described in the literature.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R17 - Nice to Have: The system shall allow a user to generate a printout of all quality
attributes

1.1 Requirements 1 CONCEPTUAL MODEL

This requirement is addressed by the following tactics:

Build Quality Attribute Model: Build an internal representation of the qual-
ity attribute data. This is a functional tactic that relates the requirement for
producing a quality attribute listing to the responsibility of generating one.

Generate PDF: Generate the PDF version from the LaTeX version of the docu-
ment. This functional tactic relates the requirements for PDF documents to
the responsibility of creating it.

Generate Quality Attribute LaTeX: Generate the LaTeX for the quality at-
tribute document from the internal model. By using LaTeX as the interme-
diate language for the generated document we can leverage its typesetting
capability to produce a quality document with minimal development costs.

R18 - Very Important: The tactics shall include a reference to the quality attributes
that are affected.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R19 - Very Important: The system shall include an ontology of software architecture
patterns that have been documented in the literature.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

R20 - Mandatory: The system shall include an ontology of viewpoints and views.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

1 CONCEPTUAL MODEL 1.1 Requirements

1.1.2 Environmental Requirements

This section describes the environment in which SASSY will operate and the corresponding
constraints that the system must operate within.

RE1 - Mandatory: All software should be compatible with the GPL license.

This requirement is addressed by the following tactics:

Restrict To GPL: We will limit ourselves to software that is compatible with
the GPL. This includes products which have a less restrictive license, such as
BSD.

RE2 - Mandatory: The system shall run on a Linux platform. Other platforms may be
supported at later date if there is a demand.

This requirement is addressed by the following tactics:

Develop On Fedora Linux: The initial version will be developed using Fedora
Linux.

RE3 - Very Important: The generated documents shall be in PDF format. This will
help to avoid unmaintainable updates being made to the generated documents.

This requirement is addressed by the following tactics:

Generate PDF: Generate the PDF version from the LaTeX version of the docu-
ment. This functional tactic relates the requirements for PDF documents to
the responsibility of creating it.

1.1.3 Quality Requirements

These are the requirements that most directly influence the design of the system.

Accessibility: Accessibility is a general term used to describe the degree to which a prod-
uct, device, service, or environment is accessible by as many people as possible. Accessibility
can be viewed as the "ability to access” and possible benefit of some system or entity. Acces-
sibility is often used to focus on people with disabilities and their right of access to entities,
often through use of assistive technology.

RQ1 - Unimportant: Initially not important, but we should not preclude the use of the
software for languages other than English.

This requirement is addressed by the following tactics:

Ignore: The requirement will be ignored. This is to address requirements which
are categorised as unimportant, or which are to be put off until a later rede-
velopment of the software.

1.1 Requirements 1 CONCEPTUAL MODEL

Availability: The degree to which a system, subsystem, or equipment is operable and in a
committable state at the start of a mission, when the mission is called for at an unknown, i.e.,
a random, time. Simply put, availability is the proportion of time a system is in a functioning
condition.

RQ2 - Nice to Have: Not important for this application as it is basically a stand-alone
system. If the design becomes distributed for multiple users, then this becomes a more
important criteria. Since it is a build time product availability is not ever very important.

This requirement is addressed by the following tactics:

Ignore: The requirement will be ignored. This is to address requirements which
are categorised as unimportant, or which are to be put off until a later rede-
velopment of the software.

Capacity: How much work will the system be required to handle?

RQ3 - Important: Initially we will support single users on moderately large projects. The
final version should support a team of architects on enormous projects.

This requirement is addressed by the following tactics:

Execution Tracing: Trace the processing so we can see what the system is do-
ing. This tactic relates the quality requirements for testability and process
traceability to a set of responsibilities that allow the developers of the system
to determine the process flow.

Multiple Processes: The system will be subdivided into several processes. This
will allow us to use existing products for some modules, and thus get us to
a working system more quickly. It will also support the requirements for
modularity, adaptability etc. by allowing modules to be replaced.

Use Network Interfaced Components: Using components that have a network
interface allows us to distribute the components across real and virtual com-
puters.

Compatibility: Software compatibility can refer to the compatibility that a particular
software has running on a particular CPU architecture such as Intel or PowerPC. Software
compatibility can also refer to ability for the software to run on a particular operating system.
Very rarely is a compiled software compatible with multiple different CPU architectures.
Normally, an application is compiled for different CPU architectures and operating systems
to allow it to be compatible with the different system. Interpreted software, on the other
hand, can normally run on many different CPU architectures and operating systems if the
interpreter is available for the architecture or operating system. Software incompatibility
occurs many times for new software released for a newer version of an operating system
which is incompatible with the older version of the operating system because it may miss
some of the features and functionality that the software depends on. Software that works on
older versions of an operating system is said to be backwards compatible.

1 CONCEPTUAL MODEL 1.1 Requirements

RQ4 - Very Important: The system should initially be compatible with the current
version of Fedora Linux. Later versions should support Red Hat Linux, and then other
distributions of Linux.

This requirement is addressed by the following tactics:

Develop On Fedora Linux: The initial version will be developed using Fedora
Linux.

Confidentiality: How well the system prevents access to sensitive data by unauthorised
people.

RQ5 - Very Important: The production version should prevent unauthorised access to
the data. The design of a system is valuable and should be protected.

This requirement is addressed by the following tactics:

Restrict Database Access: Access to the database will be restricted thus pre-
venting unauthorised access to the architectural design.

Dependability: The trustworthiness of a computing system which allows reliance to be
justifiably placed on the service it delivers

RQ6 - Very Important: A high level of dependability is required from the system. The
goal is to create architectures for very large and therefore high profile projects.

This requirement is addressed by the following tactics:

Execution Tracing: Trace the processing so we can see what the system is do-
ing. This tactic relates the quality requirements for testability and process
traceability to a set of responsibilities that allow the developers of the system
to determine the process flow.

High Visibility Processing: Ensure that the internal workings of the system
are easy to observe. This tactic is aimed at satisfying the requirements for
a highly dependable system. If SASSY is to used on high profile projects it
must be easy to confirm that the software is working correctly. The location
and purpose of all data files must be clearly documented, and all such files
must be in open data formats that can be independently verified.

Determinisability: Is the system deterministic? Will it always produce the same result
for the same input?

RQ7 - Important: The system shall produce consistent output from the same input.
A subsequent project may investigate using artificial intelligence techniques to generate or
optimise the architectural design, in which case this requirement can be relaxed.

1.1 Requirements 1 CONCEPTUAL MODEL

This requirement is addressed by the following tactics:

Single Threaded Design: A single threaded design ensures that the processes
within the system are deterministic and that tests are indicative of actual
behaviour.

Distributability: Refers to how easy it is to spread the system across multiple computers.

RQ8 - Very Important: While initial versions of the system are expected to run on a
single machine, later versions will need to support teams of architects, and hence the design
shall be capable of being distributed over multiple machines.

This requirement is addressed by the following tactics:

Multiple Processes: The system will be subdivided into several processes. This
will allow us to use existing products for some modules, and thus get us to
a working system more quickly. It will also support the requirements for
modularity, adaptability etc. by allowing modules to be replaced.

Use Network Interfaced Components: Using components that have a network
interface allows us to distribute the components across real and virtual com-
puters.

Durability: Refers to the the ACID property which guarantees that transaction’s that
have committed will survive permanently.

RQ9 - Mandatory: Updates to the ontology databases shall not be lost. Some form of
locking is required to prevent collisions.

This requirement is addressed by the following tactics:

Database Transactions: Updates to the database will be enclosed in transac-
tions so that all changes can be guaranteed.

Effectiveness: The accuracy and completeness of users’ tasks while using a system.

RQ10 - Very Important: The users shall be able to easily determine the effect that their
changes have to the resultant design.

This requirement is addressed by the following tactics:

Provide Fast Feedback: The system will immediately and automatically gener-
ate a user selected variety of documents whenever a change is made to the
data.

Efficiency: The extent to which a resource, is used for the intended purpose.

RQ11 - Important: The system should make efficient use of machine resources and the
architect’s time.

10

1 CONCEPTUAL MODEL 1.1 Requirements

This requirement is addressed by the following tactics:

Multiple Processes: The system will be subdivided into several processes. This
will allow us to use existing products for some modules, and thus get us to
a working system more quickly. It will also support the requirements for
modularity, adaptability etc. by allowing modules to be replaced.

Fault Tolerance: How well the system copes when things start to go wrong.

RQ12 - Very Important: The system shall report the details of any problems it finds,
but should attempt to complete its task as best it can. Reports should include suggestions
for remedying the situation.

This requirement is addressed by the following tactics:

Logging: All interesting events and error conditions must be logged. This tactic
relates the requirements for testability, supportability and resilience to the
responsibilites for capturing the events into a persistent store. Log messages
for error events should direct the adminstrator to the appropriate corrective
actions.

Helpfulness: Describes how easy it is for users to get information on how to use the system.

RQ13 - Mandatory: The system shall include documentation and on-line guides on how
it is to be used.

This requirement is addressed by the following tactics:

Use HTML Documents: HTML documentation will be provided to guide the
user on how to use the application.

Integrity: FEnsuring that information is not altered by unauthorized persons in a way that
is not detectable by authorized users.

RQ14 - Very Important: Production versions of the software should include a record of
who made each change to the data.

This requirement is addressed by the following tactics:

Use Version Control: A version control system allows us to record what changes
were made, when they were made, and who made them. It also allows us to
back out some changes.

Performance: Computer performance is characterized by the amount of useful work ac-
complished by a computer system compared to the time and resources used.

RQ15 - Important: Once the system has been extended to be a multi-user distributed
system it will be important that there are no appreciable performance issues.

11

1.1 Requirements 1 CONCEPTUAL MODEL

This requirement is addressed by the following tactics:

Multiple Processes: The system will be subdivided into several processes. This
will allow us to use existing products for some modules, and thus get us to
a working system more quickly. It will also support the requirements for
modularity, adaptability etc. by allowing modules to be replaced.

Predictability: The degree to which a correct prediction or forecast of a system’s state
can be made either qualitatively or quantitatively.

RQ16 - Very Important: It is important that the architects can predict what the docu-
mentation will look like while they are adding entries into the ontologies.

This requirement is addressed by the following tactics:

Provide Fast Feedback: The system will immediately and automatically gener-
ate a user selected variety of documents whenever a change is made to the
data.

Recoverability: Refers to how easy it is to get the system going again after a crash.

RQ17 - Very Important: This is important when developing large expensive systems. If
SASSY or its supporting system should crash it must be easy to get much of the pre-existing
work back as soon as possible.

This requirement is addressed by the following tactics:

Use Version Control: A version control system allows us to record what changes
were made, when they were made, and who made them. It also allows us to
back out some changes.

Repeatability: The variation in measurements taken by a single person or instrument on
the same item and under the same conditions

RQ18 - Important: The output of the system must be identical for the same inputs.

This requirement is addressed by the following tactics:

Single Threaded Design: A single threaded design ensures that the processes
within the system are deterministic and that tests are indicative of actual
behaviour.

Resilience: How well the system copes with the unexpected.

RQ18 - Important: The system shall handle unexpected inputs gracefully. It shall log
all problems, and recommend remedial actions.

12

1 CONCEPTUAL MODEL 1.1 Requirements

This requirement is addressed by the following tactics:

Logging: All interesting events and error conditions must be logged. This tactic
relates the requirements for testability, supportability and resilience to the
responsibilites for capturing the events into a persistent store. Log messages
for error events should direct the adminstrator to the appropriate corrective
actions.

Responsiveness: Describes how quickly it responds to user input.

RQ19 - Very Important: The system shall provide near instant feedback for all UI
actions. Long running actions shall not prevent other actions unless a conflict would result.

This requirement is addressed by the following tactics:

Document View: The system will allow the user to view the generated docu-
ments.

Provide Fast Feedback: The system will immediately and automatically gener-
ate a user selected variety of documents whenever a change is made to the
data.

Scalability: Its ability to either handle growing amounts of work in a graceful manner or
to be readily enlarged.

RQ20 - Very Important: The system shall be able to scale to the production of extremely
large systems. Later versions must be able to support multiple distributed architects.

This requirement is addressed by the following tactics:

Multiple Processes: The system will be subdivided into several processes. This
will allow us to use existing products for some modules, and thus get us to
a working system more quickly. It will also support the requirements for
modularity, adaptability etc. by allowing modules to be replaced.

Use Network Interfaced Components: Using components that have a network
interface allows us to distribute the components across real and virtual com-
puters.

Seamlessness: Refers to the degree to which the technologies present a consistent structure
and paradigm in interfaces and operations, so that the transition from one technology to
another is not disruptive or confusing either in usage or integration.

RQ21 - Nice to Have: Since part of the aim of the project is to demonstrate building
system from multiple 3rd party components that have been separately developed it is some-
what unreasonable to expect a seamless result. However it should not be too jarring on the
users.

13

1.1 Requirements 1 CONCEPTUAL MODEL

This requirement is addressed by the following tactics:

The User Interface: This component is responsible for allowing the user to easily
interact with the application. It should provide enough information to allow
the user to select the appropriate actions.

Security: Refers to how well the system prevents unauthorised actions.

RQ22 - Very Important: When building large, expensive systems it is important to
prevent unauthorised access to the system or its data.

This requirement is addressed by the following tactics:

Restrict Database Access: Access to the database will be restricted thus pre-
venting unauthorised access to the architectural design.

Simplicity: Relates to the burden which a thing puts on someone trying to explain or
understand it.

RQ23 - Important: It must be an easy system to learn to use.

This requirement is addressed by the following tactics:

Use HTML Documents: HTML documentation will be provided to guide the
user on how to use the application.

Processing Traceability: Refers to the ability to trace the execution path through the
running system.

RQ24 - Important: It should be possible to trace the actions of the system.

This requirement is addressed by the following tactics:

Execution Tracing: Trace the processing so we can see what the system is do-
ing. This tactic relates the quality requirements for testability and process
traceability to a set of responsibilities that allow the developers of the system
to determine the process flow.

Administrability: How easy the system is to administer or control.

RQ25 - Very Important: The system should be easy to administer once it has evolved
to having a public release.

This requirement is addressed by the following tactics:

Provide Administration Interface: A GUI will be included for administering
the application.

14

1 CONCEPTUAL MODEL 1.1 Requirements

Configurability: Refers to how easy it is to set the configuration data that the system
relies upon, and how easy it is to maintain that data in a way that correctly controls the
system.

RQ26 - Very Important: The core of the system is a software architecture ontology
which must be able to be maintained easily. It is also essential that it is easy to set up the
project specific data.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

Configuration Management: How will the configuration of the system be managed?

RQ27 - Important: If the design uses various components that are independently devel-
oped, which seems likely, then managing the combinations of components will be important.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

Customisability: Refers to how easy it is to adapt the system to the requirements of each
user. It should include how well the individual customisations cope with new versions of the
base software.

RQ28 - Mandatory: The system shall be able to be easily customised for individual
projects.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

1.1 Requirements 1 CONCEPTUAL MODEL

Degradability: Refers to how well the system copes with reduced quality on its inputs. It
can either be a graceful degradation where the system loses some functionality, or catastrophic
where service is halted completely.

RQ29 - Important: The quality of the architecture that is produced should be smoothly
dependent on the amount of information that has been captured in the project specific
ontology.

This requirement is addressed by the following tactics:

Build Ontology: Collect the information concerning the high level design of the
system into a knowledge database. This is a functional tactic that goes to
the core of the project. The underlying tactic for SASSY is that the software
architecture for a system should be captured in an ontology. This tactic
addresses all the requirements concerning the capture of the data for the
quality attributes, the data dictionary, the requirements, and the resulting
architecture.

Demonstrability: How easy it is to demonstrate the system.

RQ30 - Important: This project shall be able to be easily demonstrated to an audience
of project managers, architects and designers.

This requirement is addressed by the following tactics:

Installable Package: Provide all the software required for SASSY in a single,
easy to install package. Third party products can be installed from reposi-
tories or included in the package. Having an easy to install package allows
the system to be quickly deployed for demonstrations which, in turn makes
it easier to sell as a desirable product.

Deployability: Refers to how easy it is to put the system into production, or install on to
a user’s machine so that it can be readily used.

RQ31 - Very Important: Production versions of the system shall be straightforward to
deploy.

This requirement is addressed by the following tactics:

Installable Package: Provide all the software required for SASSY in a single,
easy to install package. Third party products can be installed from reposi-
tories or included in the package. Having an easy to install package allows
the system to be quickly deployed for demonstrations which, in turn makes
it easier to sell as a desirable product.

Documentation: What documents should be supplied with the system.

RQ32 - Mandatory: The system shall include user manuals to describe how to use it;
administration guide to describe how to manage it; and design documentation to describe
how to maintain it.

16

1 CONCEPTUAL MODEL 1.1 Requirements

This requirement is addressed by the following tactics:

Use HTML Documents: HTML documentation will be provided to guide the
user on how to use the application.

Installability: Refers to how easy it is to install the software.
RQ33 - Important: The system shall be easy to install.

This requirement is addressed by the following tactics:

Installable Package: Provide all the software required for SASSY in a single,
easy to install package. Third party products can be installed from reposi-
tories or included in the package. Having an easy to install package allows
the system to be quickly deployed for demonstrations which, in turn makes
it easier to sell as a desirable product.

Manageability: The ease with which the system can be managed so that it performs as
required.

RQ34 - Important: The system must be easy to manage.

This requirement is addressed by the following tactics:

Installable Package: Provide all the software required for SASSY in a single,
easy to install package. Third party products can be installed from reposi-
tories or included in the package. Having an easy to install package allows
the system to be quickly deployed for demonstrations which, in turn makes
it easier to sell as a desirable product.

Provide Administration Interface: A GUI will be included for administering
the application.

Mobility: Access to information or applications from occasionally-connected, portable,
networked computing devices

RQ35 - Nice to Have: Not a requirement for the initial versions, but subsequent versions
should be able to support mobile users.

This requirement is addressed by the following tactics:

Use Network Interfaced Components: Using components that have a network
interface allows us to distribute the components across real and virtual com-
puters.

Operability: The ability of products, systems and business processes to work together.

RQ36 - Mandatory: It is essential that all components of the system work well together.

17

1.1 Requirements 1 CONCEPTUAL MODEL

This requirement is addressed by the following tactics:

Use Network Interfaced Components: Using components that have a network
interface allows us to distribute the components across real and virtual com-
puters.

Stability: Many of the objects will be stable over time and will not need changes.

RQ37 - Important: This is intended to be a long lived system. It is important that its
components have a similar commitment to longevity.

This requirement is addressed by the following tactics:

Restrict To GPL: We will limit ourselves to software that is compatible with
the GPL. This includes products which have a less restrictive license, such as
BSD.

Standards Compliance: The goals of standardization can be to help with independence
of single suppliers (commoditization), compatibility, interoperability, safety, repeatability, or
quality.

RQ38 - Mandatory: The system shall use open standards for its data formats and pro-
tocols. Its user interface shall conform the UI standards of the platform.

This requirement is addressed by the following tactics:

Code Review: The code for the components of the system should be reviewed to
ensure they meet the standards for the project.

Design Review: The designs for the components of the system should be reviewed
prior to their implementation to ensure that they conform to the architectural
guidelines.

Restrict To GPL: We will limit ourselves to software that is compatible with
the GPL. This includes products which have a less restrictive license, such as
BSD.

Supportability: The ability of technical support personnel to install, configure, and mon-
itor computer products, identify exceptions or faults, debug or isolate faults to root cause
analysis, and provide hardware or software maintenance in pursuit of solving a problem and
restoring the product into service.

RQ39 - Very Important: It must be easy to install, configure and monitor the system.
All issues should be logged, and where possible the steps necessary to correct the situation
should be provided.

18

1 CONCEPTUAL MODEL 1.1 Requirements

This requirement is addressed by the following tactics:

Installable Package: Provide all the software required for SASSY in a single,
easy to install package. Third party products can be installed from reposi-
tories or included in the package. Having an easy to install package allows
the system to be quickly deployed for demonstrations which, in turn makes
it easier to sell as a desirable product.

Logging: All interesting events and error conditions must be logged. This tactic
relates the requirements for testability, supportability and resilience to the
responsibilites for capturing the events into a persistent store. Log messages
for error events should direct the adminstrator to the appropriate corrective
actions.

Provide Administration Interface: A GUI will be included for administering
the application.

Affordability: Measured by its cost relative to the amount that the purchaser is able to
pay.

RQ40 - Unimportant: Not applicable. The software is to be released under the GPL.

This requirement is addressed by the following tactics:

Restrict To GPL: We will limit ourselves to software that is compatible with
the GPL. This includes products which have a less restrictive license, such as
BSD.

Completeness: The amount of the required system functionality that has been imple-
mented.

RQA41 - Mandatory: All high priority functionality shall be implemented.

This requirement is addressed by the following tactics:

Design Review: The designs for the components of the system should be reviewed
prior to their implementation to ensure that they conform to the architectural
guidelines.

Spiral Development: A Spiral development process will be used which will in-
crementally improve the quality and functionality of the system. This will
allow us to get a demonstrable system as soon as possible.

Marketability: The use of the system with respect to the market competition.

RQ42 - Important: It should be easy to sell the product to any organisation developing
large software systems.

19

1.1 Requirements 1 CONCEPTUAL MODEL

This requirement is addressed by the following tactics:

Installable Package: Provide all the software required for SASSY in a single,
easy to install package. Third party products can be installed from reposi-
tories or included in the package. Having an easy to install package allows
the system to be quickly deployed for demonstrations which, in turn makes
it easier to sell as a desirable product.

Relevance: Refers to how closely a system matches the needs of its potential users.

RQ43 - Very Important: The system must concentrate on the software architecture
process.

This requirement is addressed by the following tactics:

Architectural Data: This ontology is responsible for the architectural data for
the system under development.

Timeliness: Refers to the delivery schedule for the system. Can it be delivered when it is
needed?

RQ44 - Important: The system needs to be competed ASAP.

This requirement is addressed by the following tactics:

Spiral Development: A Spiral development process will be used which will in-
crementally improve the quality and functionality of the system. This will
allow us to get a demonstrable system as soon as possible.

Use COTS Products: We will use existing products where suitable components
can be found. The restriction is that they must be compatible with a GPL
license for the final product.

Analyzability: Able to be understood.

RQ45 - Important: Since this is an ongoing project with an experimental component,
and where we hope that eventually support will be taken up by others, it is important that
the software is easy to understand.

This requirement is addressed by the following tactics:

Code Review: The code for the components of the system should be reviewed to
ensure they meet the standards for the project.

Design Documentation: The system will include extensive design documenta-
tion. (Much of which will be generated from this ontology.)

Design Review: The designs for the components of the system should be reviewed
prior to their implementation to ensure that they conform to the architectural
guidelines.

20

1 CONCEPTUAL MODEL 1.1 Requirements

Buildability: This refers to the ability to build the system in a timely manner.
RQ46 - Important: It must be straightforward to build the system.

This requirement is addressed by the following tactics:
Autotools Project: The Gnu standard autotools will be used to build the soft-
ware.

Complexity: How easy it is to gain an understanding of the code.

RQA47 - Important: Should be minimised. This is to be measured when comparing alter-
native designs. This is generally a design issue rather than an architecture issue.

This requirement is addressed by the following tactics:

Design Documentation: The system will include extensive design documenta-
tion. (Much of which will be generated from this ontology.)

Design Review: The designs for the components of the system should be reviewed
prior to their implementation to ensure that they conform to the architectural
guidelines.

Execution Tracing: Trace the processing so we can see what the system is do-
ing. This tactic relates the quality requirements for testability and process
traceability to a set of responsibilities that allow the developers of the system
to determine the process flow.

Object Oriented: A design approach where the code is collected into a set of
classes which restricts the visibility of data items.

Maintainability: The ease with which a software product can be modified
RQ48 - Very Important: The system must be easy to maintain.

This requirement is addressed by the following tactics:

Design Documentation: The system will include extensive design documenta-
tion. (Much of which will be generated from this ontology.)

Design Review: The designs for the components of the system should be reviewed
prior to their implementation to ensure that they conform to the architectural
guidelines.

Execution Tracing: Trace the processing so we can see what the system is do-
ing. This tactic relates the quality requirements for testability and process
traceability to a set of responsibilities that allow the developers of the system
to determine the process flow.

Object Oriented: A design approach where the code is collected into a set of
classes which restricts the visibility of data items.

21

1.1 Requirements 1 CONCEPTUAL MODEL

Portability: A general characteristic of being readily transportable to multiple platforms.

RQ49 - Nice to Have: Where possible portable components should be used. For example
Qt for the user interface components, and Java for the backend.

This requirement is addressed by the following tactics:

Restrict To GPL: We will limit ourselves to software that is compatible with
the GPL. This includes products which have a less restrictive license, such as
BSD.

Replaceability: Refers to how easy it will be to replace the system at some future point.
A system which uses proprietry format data files might prove to be nearly impossible to
replace without significant loss of data.

RQ50 - Mandatory: The data shall be held in open formats and all communication
protocols will use open standards.

This requirement is addressed by the following tactics:

Use Network Interfaced Components: Using components that have a network
interface allows us to distribute the components across real and virtual com-
puters.

Testability: Refers to the capability of an equipment or system to be tested.

RQ51 - Important: It must be straightforward to test the system and each of its compo-
nents.

This requirement is addressed by the following tactics:

Execution Tracing: Trace the processing so we can see what the system is do-
ing. This tactic relates the quality requirements for testability and process
traceability to a set of responsibilities that allow the developers of the system
to determine the process flow.

Logging: All interesting events and error conditions must be logged. This tactic
relates the requirements for testability, supportability and resilience to the
responsibilites for capturing the events into a persistent store. Log messages
for error events should direct the adminstrator to the appropriate corrective
actions.

Upgradeability: The degree to which a computer may have its specifications improved by
the addition or replacement of components

RQ52 - Very Important: The system must be able to be upgraded with new and im-
proved components as they become available.

22

1 CONCEPTUAL MODEL 1.1 Requirements

This requirement is addressed by the following tactics:

Modular Design: The system will be constructed from components that have
well defined interfaces. This tactic relates the requirements for an easy to
modify system to the responsibilities of the design to produce a set of com-
ponents that can be easily replaced or modified.

Use Network Interfaced Components: Using components that have a network
interface allows us to distribute the components across real and virtual com-
puters.

Adaptability: Able to be modified to suit new requirements.

RQ53 - Important: This is, in part, an experimental project. Adaptability is a high
priority.

This requirement is addressed by the following tactics:

Modular Design: The system will be constructed from components that have
well defined interfaces. This tactic relates the requirements for an easy to
modify system to the responsibilities of the design to produce a set of com-
ponents that can be easily replaced or modified.

Object Oriented: A design approach where the code is collected into a set of
classes which restricts the visibility of data items.

Backup: What is required in terms of backing up the software and data?

RQ54 - Mandatory: We are going to use this to build very large systems. Hence the
ability to backup the data is important.

This requirement is addressed by the following tactics:

Use Version Control: A version control system allows us to record what changes
were made, when they were made, and who made them. It also allows us to
back out some changes.

Changeability: How easy the system is to change. For example, is the source code avail-
able or just the compiled binaries? How well is the system structured? Will making a small
change break other parts of the system?

RQ55 - Important: As an experimental project it is important for the system to be easy
to change.

This requirement is addressed by the following tactics:

Modular Design: The system will be constructed from components that have
well defined interfaces. This tactic relates the requirements for an easy to
modify system to the responsibilities of the design to produce a set of com-
ponents that can be easily replaced or modified.

23

1.1 Requirements 1 CONCEPTUAL MODEL

Object Oriented: A design approach where the code is collected into a set of
classes which restricts the visibility of data items.

Restrict To GPL: We will limit ourselves to software that is compatible with
the GPL. This includes products which have a less restrictive license, such as
BSD.

Composability: A system design principle that deals with the inter-relationships of com-
ponents. A highly composable system provides recombinant components that can be selected
and assembled in various combinations to satisfy specific user requirements.

RQ56 - Nice to Have: Not a high priority to be able to assemble the system in different
ways at run time.

This requirement is addressed by the following tactics:

Ignore: The requirement will be ignored. This is to address requirements which
are categorised as unimportant, or which are to be put off until a later rede-
velopment of the software.

Conformance: Refers to how well the system meets specific industry standards.

RQ57 - Mandatory: The system shall use industry standard formats and protocols. Pro-
prietary standards are not acceptable.

This requirement is addressed by the following tactics:

Code Review: The code for the components of the system should be reviewed to
ensure they meet the standards for the project.

Design Review: The designs for the components of the system should be reviewed
prior to their implementation to ensure that they conform to the architectural
guidelines.

Restrict To GPL: We will limit ourselves to software that is compatible with
the GPL. This includes products which have a less restrictive license, such as
BSD.

Evolvability: How easy it is to modify the system to match changing usage patterns.

RQ58 - Very Important: It should be possible to adapt the system to new requirements
in a manner which does not corrupt the fundamental design of the system.

This requirement is addressed by the following tactics:

Modular Design: The system will be constructed from components that have
well defined interfaces. This tactic relates the requirements for an easy to
modify system to the responsibilities of the design to produce a set of com-
ponents that can be easily replaced or modified.

Object Oriented: A design approach where the code is collected into a set of
classes which restricts the visibility of data items.

24

1 CONCEPTUAL MODEL 1.1 Requirements

Explicitness: The amount of the design that is stated specifically, and not left as an
implied requirement.

RQ59 - Very Important: This system is being developed as an example system. The
design should be as complete and thorough as is possible.

This requirement is addressed by the following tactics:

Design Documentation: The system will include extensive design documenta-
tion. (Much of which will be generated from this ontology.)

Extensibility: A system design principle where the implementation takes into considera-
tion future growth. It is a systemic measure of the ability to extend a system and the level
of effort required to implement the extension. Extensions can be through the addition of
new functionality or through modification of existing functionality. The central theme is to
provide for change while minimizing impact to existing system functions.

RQG60 - Important: The system should be designed with the goal of making it easy to
adapt to future requirements. It should be possible to add new additional functionality to
the system without having to modify the existing functionality.

This requirement is addressed by the following tactics:

Modular Design: The system will be constructed from components that have
well defined interfaces. This tactic relates the requirements for an easy to
modify system to the responsibilities of the design to produce a set of com-
ponents that can be easily replaced or modified.

Object Oriented: A design approach where the code is collected into a set of
classes which restricts the visibility of data items.

Interchangeability: The ability that an object can be replaced by another object without
affecting code using the object.

RQ61 - Nice to Have: It should be possible to use alternate components for project
specific tasks. For example an alternate ontology editor, or viewer might be required, or an
alternate text generation component may be deemed necessary.

This requirement is addressed by the following tactics:

Modular Design: The system will be constructed from components that have
well defined interfaces. This tactic relates the requirements for an easy to
modify system to the responsibilities of the design to produce a set of com-
ponents that can be easily replaced or modified.

Object Oriented: A design approach where the code is collected into a set of
classes which restricts the visibility of data items.

Interoperability: The capability of a product or system — whose interfaces are fully dis-
closed — to interact and function with other products or systems, without any access or
implementation restrictions.

1.1 Requirements 1 CONCEPTUAL MODEL

RQ62 - Nice to Have: The production version of the system should be compatible with
other software development products.

This requirement is addressed by the following tactics:
Ignore: The requirement will be ignored. This is to address requirements which

are categorised as unimportant, or which are to be put off until a later rede-
velopment of the software.

Learnability: The capability of a software product to enable the user to learn how to use
it.

RQ63 - Important: The system should be able to be quickly learnt by architects so that
it gets to be widely used.

This requirement is addressed by the following tactics:
Documentation Review: The documentation for the system, including user man-

uals and administration manuals and any on-line documentation should be
reviewed at defined points in the development process.

Use HTML Documents: HTML documentation will be provided to guide the
user on how to use the application.

Modifiability: Refers to how easy it is to change the system for slightly different require-
ments or circumstances.

RQ64 - Important: It should be easy to modify the system for different circumstances.

This requirement is addressed by the following tactics:

Modular Design: The system will be constructed from components that have
well defined interfaces. This tactic relates the requirements for an easy to
modify system to the responsibilities of the design to produce a set of com-
ponents that can be easily replaced or modified.

Object Oriented: A design approach where the code is collected into a set of
classes which restricts the visibility of data items.

Modularity: A software design technique that increases the extent to which software is
composed from separate parts.

RQ65 - Important: The design must be modular so that components can be replaced
easily so as to accommodate improvements in quality, functionality or requirements.

26

1 CONCEPTUAL MODEL 1.1 Requirements

This requirement is addressed by the following tactics:

Modular Design: The system will be constructed from components that have
well defined interfaces. This tactic relates the requirements for an easy to
modify system to the responsibilities of the design to produce a set of com-
ponents that can be easily replaced or modified.

Object Oriented: A design approach where the code is collected into a set of
classes which restricts the visibility of data items.

Orthogonality: Guarantees that modifying the technical effect produced by a component
of a system neither creates nor propagates side effects to other components of the system.

RQG66 - Important: There should not be side effects that are propagated between com-
ponents of the system.

This requirement is addressed by the following tactics:

Design Documentation: The system will include extensive design documenta-
tion. (Much of which will be generated from this ontology.)

Object Oriented: A design approach where the code is collected into a set of
classes which restricts the visibility of data items.

27

1.2 Tactics 1 CONCEPTUAL MODEL

1.2 Tactics

The components of a system have a set of responsibilities. Each component has assigned
to it a set of things that it is responsible for.

For the functional requirements these normally map directly to a components responsi-
bilities. That is, a particular component will be responsible for a particular system function.

For the quality requirements however there is no single component that is directly re-
sponsible. No component could be responsible entirely for the performance of the system. A
tactic is what maps these requirements to a set of responsibilities which can then be assigned
to components. For example a scalability requirement might be met by using a client-server
design the tactic. We can then map the consequential responsibilities to components; in
this case by putting a service in one component and a client in another, and perhaps a name
lookup service in a third.

Thus the design process is one of selecting a set of tactics that give the best response to
each of the quality requirements. Of course there will be competition since using one tactic
might compromise the use of another it is hard to have a system that has both good security
and good useability, for example.

1.2.1 Deployment Tactics
A tactic that is implemented during the deployment of the system.

Installable Package: Provide all the software required for SASSY in a single, easy to
install package. Third party products can be installed from repositories or included in the
package. Having an easy to install package allows the system to be quickly deployed for
demonstrations which, in turn makes it easier to sell as a desirable product.

This tactic refers to the following requirements:

Demonstrability: How easy it is to demonstrate the system.

RQ30 - Important: This project shall be able to be easily demonstrated to an
audience of project managers, architects and designers.

Deployability: Refers to how easy it is to put the system into production, or
install on to a user’s machine so that it can be readily used.

RQ31 - Very Important: Production versions of the system shall be straight-
forward to deploy.

Installability: Refers to how easy it is to install the software.
RQ33 - Important: The system shall be easy to install.

Manageability: The ease with which the system can be managed so that it per-
forms as required.

RQ34 - Important: The system must be easy to manage.
Marketability: The use of the system with respect to the market competition.

RQ42 - Important: It should be easy to sell the product to any organisation
developing large software systems.

28

1 CONCEPTUAL MODEL 1.2 Tactics

Supportability: The ability of technical support personnel to install, configure,
and monitor computer products, identify exceptions or faults, debug or isolate
faults to root cause analysis, and provide hardware or software maintenance
in pursuit of solving a problem and restoring the product into service.

RQ39 - Very Important: It must be easy to install, configure and monitor the
system. All issues should be logged, and where possible the steps necessary
to correct the situation should be provided.

This tactic implies that there are components with the following responsibilites:

Checking Required Software: Checks are made to determine if the software
required by the system is installed and reports discrepencies. See Adminis-
tration Manager.

Installing Required Software: Responsible for installing all the software that
the project depends upon. See Administration Manager.

Providing Project Package: The programs and supporting data files are pack-
aged into a form that can be unpacked and used immediately. See Packaging.

1.2.2 Development Tactic
A tactic that is implemented in the design of the software.
Build Architecture Model: Build an internal representation of the architecture based
on the data drawn from the ontology. This is a functional tactic that directly relates the
requirement for generating architectural views to the responsibility of creating those views.
This tactic refers to the following requirements:
R1 - Mandatory: The system shall allow the user to generate architecture docu-
ments from specified viewpoints based on the software architecture ontologies.
This tactic implies that there are components with the following responsibilites:

Architecture Document Modelling: Build an internal representation of the ar-
chitecture document based on the contents of the ontologies. See Document
Modeller.

Diagram Modelling: Builds an internal representation of a diagram from data
extracted from the ontology. See Diagram Modeller.

View Selection: Allow the user to select which views to include in the architec-
ture document. See Document Generator, Document Modeller and SASSY
User Interface.

Build Diagrams: Build diagrams from the ontology data. These provide the views of
the architecture in a graphical form which some readers might find more useful. This is
a functional tactic that relates the requirement to provide views of the architecture to the
responsibility for creating diagrams of those views.

29

1.2 Tactics 1 CONCEPTUAL MODEL

This tactic refers to the following requirements:

R1 - Mandatory: The system shall allow the user to generate architecture docu-
ments from specified viewpoints based on the software architecture ontologies.

This tactic implies that there are components with the following responsibilites:

Diagram Layout: Organises the objects of the diagram by determining their po-
sitions and the routes for the interconnections. See Diagram Modeller.

Diagram Modelling: Builds an internal representation of a diagram from data
extracted from the ontology. See Diagram Modeller.

View Selection: Allow the user to select which views to include in the architec-
ture document. See Document Generator, Document Modeller and SASSY
User Interface.

Build Dictionary Model: Build an internal representation of the data dictionary. This
is a functional tactic that relates the requirement for a data dictionary to the responsibility
of creating one.

This tactic refers to the following requirements:

R2 - Very Important: The system shall allow the user to generate a Data Dic-
tionary document based on the corresponding ontology.

This tactic implies that there are components with the following responsibilites:

Dictionary Document Modelling: Build an internal representation of the data
dictionary document based on the contents of the ontologies. See Document
Modeller.

Build Ontology: Collect the information concerning the high level design of the system
into a knowledge database. This is a functional tactic that goes to the core of the project.
The underlying tactic for SASSY is that the software architecture for a system should be
captured in an ontology. This tactic addresses all the requirements concerning the capture of
the data for the quality attributes, the data dictionary, the requirements, and the resulting
architecture.

This tactic refers to the following requirements:

R5 - Mandatory: The system shall allow the user to build an ontology that cap-
tures the architecture of the system.

Configurability: Refers to how easy it is to set the configuration data that the
system relies upon, and how easy it is to maintain that data in a way that
correctly controls the system.

RQ26 - Very Important: The core of the system is a software architecture on-
tology which must be able to be maintained easily. It is also essential that it
is easy to set up the project specific data.

30

1 CONCEPTUAL MODEL 1.2 Tactics

Configuration Management: How will the configuration of the system be man-
aged?

RQ27 - Important: If the design uses various components that are independently
developed, which seems likely, then managing the combinations of compo-
nents will be important.

R6 - Mandatory: The system shall allow the user to construct an ontology that
captures the configuration of the software, hardware, documentation and
other components of the system.

Customisability: Refers to how easy it is to adapt the system to the requirements
of each user. It should include how well the individual customisations cope
with new versions of the base software.

RQ28 - Mandatory: The system shall be able to be easily customised for indi-
vidual projects.

R7 - Very Important: The system shall allow the user to build an ontology hold-
ing the definitions of the project specific terminology.

Degradability: Refers to how well the system copes with reduced quality on its
inputs. It can either be a graceful degradation where the system loses some
functionality, or catastrophic where service is halted completely.

RQ29 - Important: The quality of the architecture that is produced should be
smoothly dependent on the amount of information that has been captured in
the project specific ontology.

R10 - Important: The system shall include an ontology of known architectural
design patterns.

R12 - Very Important: The system shall show the relationships between the
design patterns and the achitectural tactics that they implement.

R13 - Important: The system shall include an ontology of software products that
can be used in the development or target product.

R14 - Important: The product ontology shall include references to the tactics
that the products implement.

R15 - Mandatory: The system shall allow the quality attributes to be classified
according to various quality models.

R18 - Very Important: The tactics shall include a reference to the quality at-
tributes that are affected.

R16 - Very Important: The system shall include an ontology of all quality at-
tributes described in the literature.

R8 - Very Important: The system shall allow the user to build an ontology of
requirements for the system to be developed.

31

1.2 Tactics 1 CONCEPTUAL MODEL

R19 - Very Important: The system shall include an ontology of software archi-
tecture patterns that have been documented in the literature.

R9 - Important: The system shall allow the user to build an ontology that cap-
tures how the requirements are expressed throughout the design and imple-
mentation.

R20 - Mandatory: The system shall include an ontology of viewpoints and views.

This tactic implies that there are components with the following responsibilites:

Build Architecture Ontology: Construction of an ontology of architectural in-
formation. See Architecture Ontology.

Build Configuration Ontology: Construction of an ontology of configuration
data for the project. See Configuration Ontology.

Build Data Dictionary Ontology: Construction of a dictionary or glosary of
terms used by the project. See Dictionary Ontology.

Build Design Pattern Ontology: Construct an ontology of well known archi-
tectural design patterns. Show which tactics they are used to implement. See
Design Pattern Ontology.

Build Product Ontology: Construct an ontology of products that might be use-
ful for inclusion in the project. Show links to the tactics that the products
can be used to implement. See Products Ontology.

Build Quality Attribute Ontology: Construction of an ontology of known qual-
ity attributes and the various quality models proposed in the literature. See
Quality Attribute Ontology.

Build Requirement Ontology: Construction of an ontology of the requirements
for the project. See Requirements Ontology.

Build Tactics Ontology: Construct an ontology of well known software develop-
ment tactics. Include references to the quality attributes that they address.
See Tactics Ontology.

Build Traceability Ontology: Construct an ontology showing how requirements
map through the design and code. See Traceability Ontology.

Entering the Model: This module is responsible for allowing the user to enter
the model. See OWL Gui.

Build Quality Attribute Model: Build an internal representation of the quality attribute
data. This is a functional tactic that relates the requirement for producing a quality attribute
listing to the responsibility of generating one.

This tactic refers to the following requirements:

R4 - Very Important: The system shall allow the user to publish a listing of
all known quality attributes with sufficient definitions to allow the user to
determine how important each one is for their specific project.

R17 - Nice to Have: The system shall allow a user to generate a printout of all
quality attributes

32

1 CONCEPTUAL MODEL 1.2 Tactics

This tactic implies that there are components with the following responsibilites:

Quality Attribute Document Modelling: Build an internal representation of
the quality attribute document based on the contents of the ontologies. See
Document Modeller.

Build Requirements Model: Build an internal representation of the requirements for
the proposed system. This is a functional tactic that relates the requirement for producing
a requirement listing to the responsibility of generating one.

This tactic refers to the following requirements:

R3 - Very Important: The system shall allow the user to generate a require-
ments document based on the corresponding ontology.

This tactic implies that there are components with the following responsibilites:

Requirements Document Modelling: Build an internal representation of the
requirements document based on the contents of the ontologies. See Docu-
ment, Modeller.

Collect Architecture Text: Collect the text for the architecture documentation. This is
a functional tactic that relates the requirement for creating an architecture document to the
responsibility of collecting the text from the ontology database.

This tactic refers to the following requirements:

R1 - Mandatory: The system shall allow the user to generate architecture docu-
ments from specified viewpoints based on the software architecture ontologies.

This tactic implies that there are components with the following responsibilites:

Architecture Document Modelling: Build an internal representation of the ar-
chitecture document based on the contents of the ontologies. See Document
Modeller.

Execution Tracing: Trace the processing so we can see what the system is doing. This
tactic relates the quality requirements for testability and process traceability to a set of
responsibilities that allow the developers of the system to determine the process flow.

This tactic refers to the following requirements:

Capacity: How much work will the system be required to handle?
RQ3 - Important: Initially we will support single users on moderately large
projects. The final version should support a team of architects on enormous

projects.

Complexity: How easy it is to gain an understanding of the code.

33

1.2 Tactics 1 CONCEPTUAL MODEL

RQA47 - Important: Should be minimised. This is to be measured when com-
paring alternative designs. This is generally a design issue rather than an
architecture issue.

Dependability: The trustworthiness of a computing system which allows reliance
to be justifiably placed on the service it delivers

RQ6 - Very Important: A high level of dependability is required from the sys-
tem. The goal is to create architectures for very large and therefore high
profile projects.

Maintainability: The ease with which a software product can be modified
RQ48 - Very Important: The system must be easy to maintain.
Testability: Refers to the capability of an equipment or system to be tested.

RQ51 - Important: It must be straightforward to test the system and each of
its components.

Processing Traceability: Refers to the ability to trace the execution path through
the running system.

RQ24 - Important: It should be possible to trace the actions of the system.

This tactic implies that there are components with the following responsibilites:

Generate Trace Events: Send a message to the logger at the start and end of
each function. See Trace Event Generator.

Logging Events: Saving the log messages to persistent storage. See Logger.

Generate Architecture LaTeX: Generate the LaTeX for the architecture document from
the internal model. By using LaTeX as the intermediate language for the generated docu-
ment we can leverage its typesetting capability to produce a quality document with minimal
development costs.

This tactic refers to the following requirements:
R1 - Mandatory: The system shall allow the user to generate architecture docu-
ments from specified viewpoints based on the software architecture ontologies.

This tactic implies that there are components with the following responsibilites:

Formatting the Document: This module is responsible for converting the in-
ternal representation of the document into its final format. See Document
Formatter.

Generate Data Dictionary LaTeX: Generate the LaTeX for the data dictionary doc-
ument from the internal model. By using LaTeX as the intermediate language for the gen-
erated document we can leverage its typesetting capability to produce a quality document
with minimal development costs.

34

1 CONCEPTUAL MODEL 1.2 Tactics

This tactic refers to the following requirements:

R2 - Very Important: The system shall allow the user to generate a Data Dic-
tionary document based on the corresponding ontology.

This tactic implies that there are components with the following responsibilites:

Formatting the Document: This module is responsible for converting the in-
ternal representation of the document into its final format. See Document
Formatter.

Generate PDF: Generate the PDF version from the LaTeX version of the document. This
functional tactic relates the requirements for PDF documents to the responsibility of creating
it.

This tactic refers to the following requirements:

R1 - Mandatory: The system shall allow the user to generate architecture docu-
ments from specified viewpoints based on the software architecture ontologies.

R2 - Very Important: The system shall allow the user to generate a Data Dic-
tionary document based on the corresponding ontology.

RE3 - Very Important: The generated documents shall be in PDF format. This
will help to avoid unmaintainable updates being made to the generated doc-
uments.

R4 - Very Important: The system shall allow the user to publish a listing of
all known quality attributes with sufficient definitions to allow the user to
determine how important each one is for their specific project.

R17 - Nice to Have: The system shall allow a user to generate a printout of all
quality attributes

R3 - Very Important: The system shall allow the user to generate a require-
ments document based on the corresponding ontology.

This tactic implies that there are components with the following responsibilites:

Converting DVI to PDF: DVI files are rendered to PDF. See PDF Creator.

Converting LaTeX to DVI: The LaTeX file is typeset into a device independent
format.

Generate Quality Attribute LaTeX: Generate the LaTeX for the quality attribute
document from the internal model. By using LaTeX as the intermediate language for the
generated document we can leverage its typesetting capability to produce a quality document
with minimal development costs.

1.2 Tactics 1 CONCEPTUAL MODEL

This tactic refers to the following requirements:

R4 - Very Important: The system shall allow the user to publish a listing of
all known quality attributes with sufficient definitions to allow the user to
determine how important each one is for their specific project.

R17 - Nice to Have: The system shall allow a user to generate a printout of all
quality attributes

This tactic implies that there are components with the following responsibilites:

Formatting the Document: This module is responsible for converting the in-
ternal representation of the document into its final format. See Document
Formatter.

Generate Requirements LaTeX: Generate the LaTeX for the requirements document
from the internal model. By using LaTeX as the intermediate language for the generated
document we can leverage its typesetting capability to produce a quality document with
minimal development costs.

This tactic refers to the following requirements:

R3 - Very Important: The system shall allow the user to generate a require-
ments document based on the corresponding ontology.

This tactic implies that there are components with the following responsibilites:

Formatting the Document: This module is responsible for converting the in-
ternal representation of the document into its final format. See Document
Formatter.

High Visibility Processing: Ensure that the internal workings of the system are easy to
observe. This tactic is aimed at satisfying the requirements for a highly dependable system.
If SASSY is to used on high profile projects it must be easy to confirm that the software is
working correctly. The location and purpose of all data files must be clearly documented,
and all such files must be in open data formats that can be independently verified.

This tactic refers to the following requirements:

Dependability: The trustworthiness of a computing system which allows reliance
to be justifiably placed on the service it delivers

RQ6 - Very Important: A high level of dependability is required from the sys-
tem. The goal is to create architectures for very large and therefore high
profile projects.

36

1 CONCEPTUAL MODEL 1.2 Tactics

This tactic implies that there are components with the following responsibilites:

Document The Design: Responsible for ensuring the design is fully documented.
See Documentation.

Generate Trace Events: Send a message to the logger at the start and end of
each function. See Trace Event Generator.

The User Interface: This component is responsible for allowing the user to easily
interact with the application. It should provide enough information to allow
the user to select the appropriate actions. See SASSY User Interface.

Visualizing the Model: This module is responsible for displaying the model to
the user. See OWL Viewer.

Logging: All interesting events and error conditions must be logged. This tactic relates the
requirements for testability, supportability and resilience to the responsibilites for capturing
the events into a persistent store. Log messages for error events should direct the adminstrator
to the appropriate corrective actions.

This tactic refers to the following requirements:

Fault Tolerance: How well the system copes when things start to go wrong.

RQ12 - Very Important: The system shall report the details of any problems it
finds, but should attempt to complete its task as best it can. Reports should
include suggestions for remedying the situation.

Resilience: How well the system copes with the unexpected.

RQ18 - Important: The system shall handle unexpected inputs gracefully. It
shall log all problems, and recommend remedial actions.

Supportability: The ability of technical support personnel to install, configure,
and monitor computer products, identify exceptions or faults, debug or isolate
faults to root cause analysis, and provide hardware or software maintenance
in pursuit of solving a problem and restoring the product into service.

RQ39 - Very Important: It must be easy to install, configure and monitor the
system. All issues should be logged, and where possible the steps necessary
to correct the situation should be provided.

Testability: Refers to the capability of an equipment or system to be tested.

RQ51 - Important: It must be straightforward to test the system and each of
its components.

This tactic implies that there are components with the following responsibilites:

Generate Log Events: Create a log message whenever any unusual event occurs.
See Log Event Notifier.

Logging Events: Saving the log messages to persistent storage. See Logger.

37

1.2 Tactics 1 CONCEPTUAL MODEL

1.2.3 Transaction

A transaction is the bundling of several sequential steps such that the entire bundle can
be undone at once.

Database Transactions: Updates to the database will be enclosed in transactions so that
all changes can be guaranteed.

This tactic refers to the following requirements:

Durability: Refers to the the ACID property which guarantees that transaction’s
that have committed will survive permanently.

RQ9 - Mandatory: Updates to the ontology databases shall not be lost. Some
form of locking is required to prevent collisions.
This tactic implies that there are components with the following responsibilites:
Storing OWL Data: The ontology data must be stored in a persistent database.
See OWL Database.
1.2.4 Modifiability Tactics
Tactics to control modifiability have as their goal controlling the time and cost to imple-

ment, test, and deploy changes.

Modular Design: The system will be constructed from components that have well de-
fined interfaces. This tactic relates the requirements for an easy to modify system to the
responsibilities of the design to produce a set of components that can be easily replaced or
modified.

This tactic refers to the following requirements:

Adaptability: Able to be modified to suit new requirements.

RQ53 - Important: This is, in part, an experimental project. Adaptability is a
high priority.

Changeability: How easy the system is to change. For example, is the source code
available or just the compiled binaries? How well is the system structured?
Will making a small change break other parts of the system?

RQ55 - Important: As an experimental project it is important for the system to
be easy to change.

Evolvability: How easy it is to modify the system to match changing usage pat-
terns.

RQ58 - Very Important: It should be possible to adapt the system to new re-
quirements in a manner which does not corrupt the fundamental design of
the system.

38

1 CONCEPTUAL MODEL 1.2 Tactics

Extensibility: A system design principle where the implementation takes into
consideration future growth. It is a systemic measure of the ability to extend a
system and the level of effort required to implement the extension. Extensions
can be through the addition of new functionality or through modification
of existing functionality. The central theme is to provide for change while
minimizing impact to existing system functions.

RQ60 - Important: The system should be designed with the goal of making it
easy to adapt to future requirements. It should be possible to add new ad-
ditional functionality to the system without having to modify the existing
functionality.

Interchangeability: The ability that an object can be replaced by another object
without affecting code using the object.

RQ61 - Nice to Have: It should be possible to use alternate components for
project specific tasks. For example an alternate ontology editor, or viewer
might be required, or an alternate text generation component may be deemed
necessary.

Modifiability: Refers to how easy it is to change the system for slightly different
requirements or circumstances.

RQ64 - Important: It should be easy to modify the system for different circum-
stances.

Modularity: A software design technique that increases the extent to which soft-
ware is composed from separate parts.

RQG65 - Important: The design must be modular so that components can be
replaced easily so as to accommodate improvements in quality, functionality
or requirements.

Upgradeability: The degree to which a computer may have its specifications
improved by the addition or replacement of components

RQ52 - Very Important: The system must be able to be upgraded with new
and improved components as they become available.

This tactic implies that there are components with the following responsibilites:

Define System Structure: Produce design documentation setting out the struc-
ture of the system. See Architecture.

1.2.5 Defer Binding

Defer the binding of procedure calls to the target function until run time.

Interpreted Language: An interpreter can allow the system to defer binding function
calls until run-time. It allows the user or administrator of the system to modify and extend
its behavior.

39

1.2 Tactics 1 CONCEPTUAL MODEL

This tactic refers to the following requirements:

R1 - Mandatory: The system shall allow the user to generate architecture docu-
ments from specified viewpoints based on the software architecture ontologies.

This tactic implies that there are components with the following responsibilites:

Interpret Document Description: Use the byte code to control the construc-
tion of a section of the document. See Document Description Language In-
terpreter.

Parse Document Description Language: Parse the textual representation of
the document description to produce the byte code for the interpreter. See
Document Descrition Language Parser.

1.2.6 Object Oriented Design

A technique that allows data values to be hidden behind an interface. This reduces system
complexity by constraining the way these data values may be modified. Changes to data
values can only be made by the owning object’s code, rather than any function in the system
which is the case for the alternative structured design.

Object Oriented: A design approach where the code is collected into a set of classes which
restricts the visibility of data items.

This tactic refers to the following requirements:

Adaptability: Able to be modified to suit new requirements.

RQ53 - Important: This is, in part, an experimental project. Adaptability is a
high priority.

Changeability: How easy the system is to change. For example, is the source code
available or just the compiled binaries? How well is the system structured?
Will making a small change break other parts of the system?

RQ55 - Important: As an experimental project it is important for the system to
be easy to change.

Complexity: How easy it is to gain an understanding of the code.

RQA47 - Important: Should be minimised. This is to be measured when com-
paring alternative designs. This is generally a design issue rather than an
architecture issue.

Evolvability: How easy it is to modify the system to match changing usage pat-
terns.

RQ58 - Very Important: It should be possible to adapt the system to new re-
quirements in a manner which does not corrupt the fundamental design of
the system.

40

1 CONCEPTUAL MODEL 1.2 Tactics

Extensibility: A system design principle where the implementation takes into
consideration future growth. It is a systemic measure of the ability to extend a
system and the level of effort required to implement the extension. Extensions
can be through the addition of new functionality or through modification
of existing functionality. The central theme is to provide for change while
minimizing impact to existing system functions.

RQG60 - Important: The system should be designed with the goal of making it
easy to adapt to future requirements. It should be possible to add new ad-
ditional functionality to the system without having to modify the existing
functionality.

Interchangeability: The ability that an object can be replaced by another object
without affecting code using the object.

RQ61 - Nice to Have: It should be possible to use alternate components for
project specific tasks. For example an alternate ontology editor, or viewer
might be required, or an alternate text generation component may be deemed
necessary.

Maintainability: The ease with which a software product can be modified
RQ48 - Very Important: The system must be easy to maintain.

Modifiability: Refers to how easy it is to change the system for slightly different
requirements or circumstances.

RQ64 - Important: It should be easy to modify the system for different circum-
stances.

Modularity: A software design technique that increases the extent to which soft-
ware is composed from separate parts.

RQ65 - Important: The design must be modular so that components can be
replaced easily so as to accommodate improvements in quality, functionality
or requirements.

Orthogonality: Guarantees that modifying the technical effect produced by a
component of a system neither creates nor propagates side effects to other
components of the system.

RQG66 - Important: There should not be side effects that are propagated between
components of the system.

This tactic implies that there are components with the following responsibilites:

Define System Structure: Produce design documentation setting out the struc-
ture of the system. See Architecture.

1.2.7 Performance Monitoring

Monitoring the performance of the system can allow bottlenecks to be detected before they
become an issue for the users.

41

1.2 Tactics 1 CONCEPTUAL MODEL

Execution Tracing: Trace the processing so we can see what the system is doing. This
tactic relates the quality requirements for testability and process traceability to a set of
responsibilities that allow the developers of the system to determine the process flow.

This tactic refers to the following requirements:

Capacity: How much work will the system be required to handle?

RQ3 - Important: Initially we will support single users on moderately large
projects. The final version should support a team of architects on enormous
projects.

Complexity: How easy it is to gain an understanding of the code.
RQ47 - Important: Should be minimised. This is to be measured when com-
paring alternative designs. This is generally a design issue rather than an

architecture issue.

Dependability: The trustworthiness of a computing system which allows reliance
to be justifiably placed on the service it delivers

RQ6 - Very Important: A high level of dependability is required from the sys-
tem. The goal is to create architectures for very large and therefore high
profile projects.

Maintainability: The ease with which a software product can be modified

RQ48 - Very Important: The system must be easy to maintain.

Testability: Refers to the capability of an equipment or system to be tested.

RQ51 - Important: It must be straightforward to test the system and each of
its components.

Processing Traceability: Refers to the ability to trace the execution path through
the running system.

RQ24 - Important: It should be possible to trace the actions of the system.

This tactic implies that there are components with the following responsibilites:

Generate Trace Events: Send a message to the logger at the start and end of
each function. See Trace Event Generator.

Logging Events: Saving the log messages to persistent storage. See Logger.

1.2.8 Introduce Concurrency

If requests can be processed in parallel, the blocked time can be reduced. Concurrency can
be introduced by processing different streams of events on different threads or by creating
additional threads to process different sets of activities.

42

1 CONCEPTUAL MODEL 1.2 Tactics

Multiple Processes: The system will be subdivided into several processes. This will
allow us to use existing products for some modules, and thus get us to a working system
more quickly. It will also support the requirements for modularity, adaptability etc. by
allowing modules to be replaced.

This tactic refers to the following requirements:

Capacity: How much work will the system be required to handle?

RQ3 - Important: Initially we will support single users on moderately large
projects. The final version should support a team of architects on enormous
projects.

Distributability: Refers to how easy it is to spread the system across multiple
computers.

RQ8 - Very Important: While initial versions of the system are expected to run
on a single machine, later versions will need to support teams of architects,
and hence the design shall be capable of being distributed over multiple ma-
chines.

Efficiency: The extent to which a resource, is used for the intended purpose.

RQ11 - Important: The system should make efficient use of machine resources
and the architect’s time.

Performance: Computer performance is characterized by the amount of useful
work accomplished by a computer system compared to the time and resources
used.

RQ15 - Important: Once the system has been extended to be a multi-user dis-
tributed system it will be important that there are no appreciable performance
issues.

Scalability: Its ability to either handle growing amounts of work in a graceful
manner or to be readily enlarged.

RQ20 - Very Important: The system shall be able to scale to the production
of extremely large systems. Later versions must be able to support multiple
distributed architects.

This tactic implies that there are components with the following responsibilites:

Launching Processes: Start any processes that the SASSY system needs to have
running. See Administration Manager.

Monitoring Processes: Ensure that all required background processes are run-
ning, and restart them if necessary. See Administration Manager.

Stopping Processes: Terminate the background processes when they are no longer
required. See Administration Manager.

43

1.2 Tactics 1 CONCEPTUAL MODEL

Use Network Interfaced Components: Using components that have a network interface
allows us to distribute the components across real and virtual computers.

This tactic refers to the following requirements:

Capacity: How much work will the system be required to handle?

RQ3 - Important: Initially we will support single users on moderately large
projects. The final version should support a team of architects on enormous
projects.

Distributability: Refers to how easy it is to spread the system across multiple
computers.

RQ8 - Very Important: While initial versions of the system are expected to run
on a single machine, later versions will need to support teams of architects,
and hence the design shall be capable of being distributed over multiple ma-
chines.

Mobility: Access to information or applications from occasionally-connected, portable,
networked computing devices

RQ35 - Nice to Have: Not a requirement for the initial versions, but subsequent
versions should be able to support mobile users.

Operability: The ability of products, systems and business processes to work
together.

RQ36 - Mandatory: It is essential that all components of the system work well
together.

Replaceability: Refers to how easy it will be to replace the system at some future
point. A system which uses proprietry format data files might prove to be
nearly impossible to replace without significant loss of data.

RQ50 - Mandatory: The data shall be held in open formats and all communi-
cation protocols will use open standards.

Scalability: Its ability to either handle growing amounts of work in a graceful
manner or to be readily enlarged.

RQ20 - Very Important: The system shall be able to scale to the production
of extremely large systems. Later versions must be able to support multiple
distributed architects.

Upgradeability: The degree to which a computer may have its specifications
improved by the addition or replacement of components

RQ52 - Very Important: The system must be able to be upgraded with new
and improved components as they become available.

This tactic implies that there are components with the following responsibilites:

Remote Procedure Calls: An ability to make a call to a procedure hosted in
another process, possibly on another machine. See OWL Interface.

44

1 CONCEPTUAL MODEL 1.2 Tactics

1.2.9 Single Thread
Confining an application to having just a single thread forces it to be deterministic which

greatly simplifies development and testing.

Single Threaded Design: A single threaded design ensures that the processes within the
system are deterministic and that tests are indicative of actual behaviour.
This tactic refers to the following requirements:

Determinisability: Is the system deterministic? Will it always produce the same
result for the same input?

RQ7 - Important: The system shall produce consistent output from the same
input. A subsequent project may investigate using artificial intelligence tech-
niques to generate or optimise the architectural design, in which case this
requirement can be relaxed.

Repeatability: The variation in measurements taken by a single person or instru-
ment on the same item and under the same conditions

RQ18 - Important: The output of the system must be identical for the same
inputs.
This tactic implies that there are components with the following responsibilites:

Architectural Data: This ontology is responsible for the architectural data for
the system under development. See Architecture Ontology.

Document The Design: Responsible for ensuring the design is fully documented.
See Documentation.

1.2.10 Usability Tactics

Tactics that improve the usability of the software.
Document View: The system will allow the user to view the generated documents.

This tactic refers to the following requirements:

Responsiveness: Describes how quickly it responds to user input.

RQ19 - Very Important: The system shall provide near instant feedback for all
UI actions. Long running actions shall not prevent other actions unless a
conflict would result.

This tactic implies that there are components with the following responsibilites:
View Documents: Responsible for allowing the user to view the generated doc-

uments. See PDF Viewer.

Provide Fast Feedback: The system will immediately and automatically generate a user
selected variety of documents whenever a change is made to the data.

1.2 Tactics 1 CONCEPTUAL MODEL

This tactic refers to the following requirements:

Effectiveness: The accuracy and completeness of users’ tasks while using a sys-
tem.

RQ10 - Very Important: The users shall be able to easily determine the effect
that their changes have to the resultant design.

Predictability: The degree to which a correct prediction or forecast of a system’s
state can be made either qualitatively or quantitatively.

RQ16 - Very Important: It is important that the architects can predict what
the documentation will look like while they are adding entries into the on-
tologies.

Responsiveness: Describes how quickly it responds to user input.

RQ19 - Very Important: The system shall provide near instant feedback for all
Ul actions. Long running actions shall not prevent other actions unless a
conflict would result.

This tactic implies that there are components with the following responsibilites:

Change Detection: Updates to the ontology databases are detected and an ap-
propriate message generated. See Administration Manager.

The User Interface: This component is responsible for allowing the user to easily
interact with the application. It should provide enough information to allow
the user to select the appropriate actions. See SASSY User Interface.

1.2.11 Task Oriented

The user interface programs are built to handle specific tasks, rather than be general
purpose. The result is a program that guides the user through the steps necessary to achieve
the goal. The danger with this approach is that the programs may not be able to handle
unexpected requirements.

Provide Administration Interface: A GUI will be included for administering the ap-
plication.

This tactic refers to the following requirements:

Administrability: How easy the system is to administer or control.

RQ25 - Very Important: The system should be easy to administer once it has
evolved to having a public release.

Manageability: The ease with which the system can be managed so that it per-
forms as required.

RQ34 - Important: The system must be easy to manage.

46

1 CONCEPTUAL MODEL 1.2 Tactics

Supportability: The ability of technical support personnel to install, configure,
and monitor computer products, identify exceptions or faults, debug or isolate
faults to root cause analysis, and provide hardware or software maintenance
in pursuit of solving a problem and restoring the product into service.

RQ39 - Very Important: It must be easy to install, configure and monitor the
system. All issues should be logged, and where possible the steps necessary
to correct the situation should be provided.

This tactic implies that there are components with the following responsibilites:

The User Interface: This component is responsible for allowing the user to easily
interact with the application. It should provide enough information to allow
the user to select the appropriate actions. See SASSY User Interface.

Requirements User Interface: A specialised user interface component that allows the
user to enter or edit the user requirements will be included in SASSY.
This tactic refers to the following requirements:
R11 - Important: The system shall provide the ability to automatically assign
unique identifiers for each requirement.
This tactic implies that there are components with the following responsibilites:

The User Interface: This component is responsible for allowing the user to easily
interact with the application. It should provide enough information to allow
the user to select the appropriate actions. See SASSY User Interface.

1.2.12 TUse COTS Products

Using components that have already been built and tested can save considerable time
during development. This must be weighted against the cost and constraints imposed by the
product and the vendor.

Use COTS Products: We will use existing products where suitable components can be
found. The restriction is that they must be compatible with a GPL license for the final
product.

This tactic refers to the following requirements:

Timeliness: Refers to the delivery schedule for the system. Can it be delivered
when it is needed?

RQ44 - Important: The system needs to be competed ASAP.

This tactic implies that there are components with the following responsibilites:

Architectural Data: This ontology is responsible for the architectural data for
the system under development. See Architecture Ontology.

Product:

47

1.2 Tactics 1 CONCEPTUAL MODEL

1.2.13 Process Tactic

A tactic that is impemented in the development process.
Autotools Project: The Gnu standard autotools will be used to build the software.

This tactic refers to the following requirements:

Buildability: This refers to the ability to build the system in a timely manner.

RQ46 - Important: It must be straightforward to build the system.

This tactic implies that there are components with the following responsibilites:

Automated Building: Responsible for automating the building of the software.
See Implementation.

Automated Configuration: Responsible for automatically configuring the soft-
ware according to the environment it is being built in. See Implementation.

Design Documentation: The system will include extensive design documentation. (Much
of which will be generated from this ontology.)

This tactic refers to the following requirements:

Analyzability: Able to be understood.

RQ45 - Important: Since this is an ongoing project with an experimental com-
ponent, and where we hope that eventually support will be taken up by others,
it is important that the software is easy to understand.

Complexity: How easy it is to gain an understanding of the code.

RQA47 - Important: Should be minimised. This is to be measured when com-
paring alternative designs. This is generally a design issue rather than an
architecture issue.

Explicitness: The amount of the design that is stated specifically, and not left as
an implied requirement.

RQ59 - Very Important: This system is being developed as an example system.
The design should be as complete and thorough as is possible.

Maintainability: The ease with which a software product can be modified
RQ48 - Very Important: The system must be easy to maintain.

Orthogonality: Guarantees that modifying the technical effect produced by a
component of a system neither creates nor propagates side effects to other
components of the system.

RQG66 - Important: There should not be side effects that are propagated between
components of the system.

48

1 CONCEPTUAL MODEL 1.2 Tactics

This tactic implies that there are components with the following responsibilites:

Document The Design: Responsible for ensuring the design is fully documented.
See Documentation.

Develop On Fedora Linux: The initial version will be developed using Fedora Linux.

This tactic refers to the following requirements:

Compatibility: Software compatibility can refer to the compatibility that a par-
ticular software has running on a particular CPU architecture such as Intel or
PowerPC. Software compatibility can also refer to ability for the software to
run on a particular operating system. Very rarely is a compiled software com-
patible with multiple different CPU architectures. Normally, an application
is compiled for different CPU architectures and operating systems to allow it
to be compatible with the different system. Interpreted software, on the other
hand, can normally run on many different CPU architectures and operating
systems if the interpreter is available for the architecture or operating system.
Software incompatibility occurs many times for new software released for a
newer version of an operating system which is incompatible with the older
version of the operating system because it may miss some of the features and
functionality that the software depends on. Software that works on older
versions of an operating system is said to be backwards compatible.

RQ4 - Very Important: The system should initially be compatible with the cur-
rent version of Fedora Linux. Later versions should support Red Hat Linux,
and then other distributions of Linux.

RE2 - Mandatory: The system shall run on a Linux platform. Other platforms
may be supported at later date if there is a demand.

This tactic implies that there are components with the following responsibilites:

Installing Fedora Linux: This component is responsible for providing a copy of
Fedora Linux that is suitable configured and has the correct software. See
Operating System.

Restrict To GPL: We will limit ourselves to software that is compatible with the GPL.
This includes products which have a less restrictive license, such as BSD.

This tactic refers to the following requirements:

Affordability: Measured by its cost relative to the amount that the purchaser is
able to pay.

RQA40 - Unimportant: Not applicable. The software is to be released under the
GPL.

Changeability: How easy the system is to change. For example, is the source code

available or just the compiled binaries? How well is the system structured?
Will making a small change break other parts of the system?

49

1.2 Tactics 1 CONCEPTUAL MODEL

RQ55 - Important: As an experimental project it is important for the system to
be easy to change.

Conformance: Refers to how well the system meets specific industry standards.

RQ57 - Mandatory: The system shall use industry standard formats and proto-
cols. Proprietary standards are not acceptable.

RE1 - Mandatory: All software should be compatible with the GPL license.

Portability: A general characteristic of being readily transportable to multiple
platforms.

RQ49 - Nice to Have: Where possible portable components should be used. For
example Qt for the user interface components, and Java for the backend.

Stability: Many of the objects will be stable over time and will not need changes.

RQ37 - Important: This is intended to be a long lived system. It is important
that its components have a similar commitment to longevity.

Standards Compliance: The goals of standardization can be to help with inde-
pendence of single suppliers (commoditization), compatibility, interoperabil-
ity, safety, repeatability, or quality.

RQ38 - Mandatory: The system shall use open standards for its data formats
and protocols. Its user interface shall conform the Ul standards of the plat-
form.

This tactic implies that there are components with the following responsibilites:

Checking Required Software: Checks are made to determine if the software
required by the system is installed and reports discrepencies. See Adminis-
tration Manager.

Use Version Control: A version control system allows us to record what changes were
made, when they were made, and who made them. It also allows us to back out some changes.

This tactic refers to the following requirements:

Backup: What is required in terms of backing up the software and data?

RQ54 - Mandatory: We are going to use this to build very large systems. Hence
the ability to backup the data is important.

Integrity: Ensuring that information is not altered by unauthorized persons in a
way that is not detectable by authorized users.

RQ14 - Very Important: Production versions of the software should include a
record of who made each change to the data.

Recoverability: Refers to how easy it is to get the system going again after a
crash.

RQ17 - Very Important: This is important when developing large expensive
systems. If SASSY or its supporting system should crash it must be easy to
get much of the pre-existing work back as soon as possible.

1 CONCEPTUAL MODEL 1.2 Tactics

This tactic implies that there are components with the following responsibilites:

Provide Version Control: Responsible for providing version control. See Ver-
sion Control.

1.2.14 Reviews

Use design and code reviews at defined points in the development process to ensure devel-
opment is on track and to bring other developers up to speed.

Code Review: The code for the components of the system should be reviewed to ensure
they meet the standards for the project.

This tactic refers to the following requirements:

Analyzability: Able to be understood.

RQ45 - Important: Since this is an ongoing project with an experimental com-
ponent, and where we hope that eventually support will be taken up by others,
it is important that the software is easy to understand.

Conformance: Refers to how well the system meets specific industry standards.

RQ57 - Mandatory: The system shall use industry standard formats and proto-
cols. Proprietary standards are not acceptable.

Standards Compliance: The goals of standardization can be to help with inde-
pendence of single suppliers (commoditization), compatibility, interoperabil-
ity, safety, repeatability, or quality.

RQ38 - Mandatory: The system shall use open standards for its data formats
and protocols. Its user interface shall conform the Ul standards of the plat-
form.

This tactic implies that there are components with the following responsibilites:

Ensuring Code Reviews: Responsible for getting code reviews done. See Code
Review.

Recording Code Reviews: Responsible for recording the results of code reviews.
See Code Review.

Design Review: The designs for the components of the system should be reviewed prior
to their implementation to ensure that they conform to the architectural guidelines.

This tactic refers to the following requirements:
Analyzability: Able to be understood.
RQ45 - Important: Since this is an ongoing project with an experimental com-

ponent, and where we hope that eventually support will be taken up by others,
it is important that the software is easy to understand.

o1

1.2 Tactics 1 CONCEPTUAL MODEL

Completeness: The amount of the required system functionality that has been
implemented.

RQ41 - Mandatory: All high priority functionality shall be implemented.
Complexity: How easy it is to gain an understanding of the code.

RQA47 - Important: Should be minimised. This is to be measured when com-
paring alternative designs. This is generally a design issue rather than an
architecture issue.

Conformance: Refers to how well the system meets specific industry standards.

RQ57 - Mandatory: The system shall use industry standard formats and proto-
cols. Proprietary standards are not acceptable.

Maintainability: The ease with which a software product can be modified
RQ48 - Very Important: The system must be easy to maintain.

Standards Compliance: The goals of standardization can be to help with inde-
pendence of single suppliers (commoditization), compatibility, interoperabil-
ity, safety, repeatability, or quality.

RQ38 - Mandatory: The system shall use open standards for its data formats
and protocols. Its user interface shall conform the Ul standards of the plat-
form.

This tactic implies that there are components with the following responsibilites:

Ensuring Design Reviews: Responsible for ensuring that the design of the sys-
tem is reviewed in a timely manner. See Design Review.

Recording Design Reviews: Responsible for recording the outcome of a design
review. See Design Review.

Documentation Review: The documentation for the system, including user manuals and
administration manuals and any on-line documentation should be reviewed at defined points
in the development process.

This tactic refers to the following requirements:

Learnability: The capability of a software product to enable the user to learn
how to use it.

RQ63 - Important: The system should be able to be quickly learnt by architects
so that it gets to be widely used.
This tactic implies that there are components with the following responsibilites:

Ensure Documentation Reviews: Responsible for ensuring that documenta-
tion is reviewed in a timely manner. See Documentation Review.

Record Documentation Review: Responsible for recording the outcome of a
documentation review. See Documentation Review.

1 CONCEPTUAL MODEL 1.2 Tactics

1.2.15 Spiral Development
The development starts with a simple infrastructure and adds capability and quality over

subsequent increments.

Spiral Development: A Spiral development process will be used which will incrementally
improve the quality and functionality of the system. This will allow us to get a demonstrable
system as soon as possible.

This tactic refers to the following requirements:

Completeness: The amount of the required system functionality that has been
implemented.

RQ41 - Mandatory: All high priority functionality shall be implemented.

Timeliness: Refers to the delivery schedule for the system. Can it be delivered
when it is needed?

RQ44 - Important: The system needs to be competed ASAP.

This tactic implies that there are components with the following responsibilites:

The Development Methodology: Responsible for defining the set of tasks and
their relationships to be undertaken for the project. See Development Ontol-
ogy and Architecture.

The Increment Plan: Resposible for specifying the work to be done during each
increment of the development. See Development Ontology and Architecture.

1.2.16 Runtime Tactic

A tactic that is implemented in the configuration of the running system.

Restrict Database Access: Access to the database will be restricted thus preventing
unauthorised access to the architectural design.
This tactic refers to the following requirements:

Confidentiality: How well the system prevents access to sensitive data by unau-
thorised people.

RQ5 - Very Important: The production version should prevent unauthorised
access to the data. The design of a system is valuable and should be protected.

Security: Refers to how well the system prevents unauthorised actions.

RQ22 - Very Important: When building large, expensive systems it is impor-
tant to prevent unauthorised access to the system or its data.

This tactic implies that there are components with the following responsibilites:

Limiting File Access: Only authorised users will be able to access files. See
Operating System.

23

1.2 Tactics 1 CONCEPTUAL MODEL

Use HTML Documents: HTML documentation will be provided to guide the user on
how to use the application.

This tactic refers to the following requirements:

Documentation: What documents should be supplied with the system.

RQ32 - Mandatory: The system shall include user manuals to describe how to
use it; administration guide to describe how to manage it; and design docu-
mentation to describe how to maintain it.

Helpfulness: Describes how easy it is for users to get information on how to use
the system.

RQ13 - Mandatory: The system shall include documentation and on-line guides
on how it is to be used.

Learnability: The capability of a software product to enable the user to learn
how to use it.

RQG63 - Important: The system should be able to be quickly learnt by architects
so that it gets to be widely used.

Simplicity: Relates to the burden which a thing puts on someone trying to explain
or understand it.

RQ23 - Important: It must be an easy system to learn to use.

This tactic implies that there are components with the following responsibilites:

Displaying HTML Documents: Render a HTML document. See Browser.

Ensure Documentation Reviews: Responsible for ensuring that documenta-
tion is reviewed in a timely manner. See Documentation Review.

HTML User Guide: A guide for the users of SASSY explaining how to use the
system to create architecture documents. See Documentation.

Record Documentation Review: Responsible for recording the outcome of a
documentation review. See Documentation Review.

1.2.17 Multiple Processes

Mulitiple instances of the program are run to provide higher performance by distributing
the load across multiple processors.

Multiple Processes: The system will be subdivided into several processes. This will
allow us to use existing products for some modules, and thus get us to a working system
more quickly. It will also support the requirements for modularity, adaptability etc. by
allowing modules to be replaced.

1

CONCEPTUAL MODEL 1.2 Tactics

This tactic refers to the following requirements:

Capacity: How much work will the system be required to handle?

RQ3 - Important: Initially we will support single users on moderately large
projects. The final version should support a team of architects on enormous
projects.

Distributability: Refers to how easy it is to spread the system across multiple
computers.

RQ8 - Very Important: While initial versions of the system are expected to run
on a single machine, later versions will need to support teams of architects,
and hence the design shall be capable of being distributed over multiple ma-
chines.

Efficiency: The extent to which a resource, is used for the intended purpose.

RQ11 - Important: The system should make efficient use of machine resources
and the architect’s time.

Performance: Computer performance is characterized by the amount of useful
work accomplished by a computer system compared to the time and resources
used.

RQ15 - Important: Once the system has been extended to be a multi-user dis-
tributed system it will be important that there are no appreciable performance
issues.

Scalability: Its ability to either handle growing amounts of work in a graceful
manner or to be readily enlarged.

RQ20 - Very Important: The system shall be able to scale to the production
of extremely large systems. Later versions must be able to support multiple
distributed architects.

This tactic implies that there are components with the following responsibilites:

Launching Processes: Start any processes that the SASSY system needs to have
running. See Administration Manager.

Monitoring Processes: Ensure that all required background processes are run-
ning, and restart them if necessary. See Administration Manager.

Stopping Processes: Terminate the background processes when they are no longer
required. See Administration Manager.

1.3 Concept Modules 1 CONCEPTUAL MODEL

1.3 Concept Modules

This section describes the system in terms of its component structure.

1.3.1 Administration Manager
Provides the internal administration for the system, such as ensuring all required back-
ground software is installed and running.

This component is implemeted with Process Manager and Software Manager.

This component has the following responsibilities:

Change Detection: Updates to the ontology databases are detected and an ap-
propriate message generated. See Provide Fast Feedback.

Checking Required Software: Checks are made to determine if the software
required by the system is installed and reports discrepencies. See Installable
Package and Restrict To GPL.

Installing Required Software: Responsible for installing all the software that
the project depends upon. See Installable Package.

Launching Processes: Start any processes that the SASSY system needs to have
running. See Multiple Processes.

Monitoring Processes: Ensure that all required background processes are run-
ning, and restart them if necessary. See Multiple Processes.

Stopping Processes: Terminate the background processes when they are no longer
required. See Multiple Processes.

SASSY
is part of
Administration
Manager
[
isused by |is used by \isused by
Log : Trace
Event ngag:g Event
Notifier Generator

Figure 1: Administration Manager

1.3.2 Browser

Allows the user to view HTML documents.

This component is implemeted with Firefox.

56

1 CONCEPTUAL MODEL 1.3 Concept Modules

This component has the following responsibilities:

Displaying HTML Documents: Render a HTML document. See Use HTML
Documents.

SASSY
User
Interface

sused by

Browser

Figure 2: Browser

1.3.3 Configuration Manager

Allows the user to manage the configuration data.

This component is implemeted with Configuration Manager.

This component has the following responsibilities:

Managing the Configuration: This module is responsible for managing the con-
figuration data for the system.

SASSY

‘&part of

SASSY
ispart of User
Interface

ﬁ;dby

Cort ;91‘;;"’;0” isused by \is used by

/s'used by\susedby iss used by

: Log Trace
\(/Zgn?r?)T Event Event
Notifier Generator

Figure 3: Configuration Manager

1.3.4 Document Description Language Interpreter

Interpret the byte code for a section of a document and generate an internal representation
of the document.

o7

1.3 Concept Modules 1 CONCEPTUAL MODEL

This component has the following responsibilities:

Interpret Document Description: Use the byte code to control the construc-
tion of a section of the document. See Interpreted Language.

Document
Modeller

is part of

Document
isused by DL&;SL?;%” isused by
Interpreter

isused by‘s used by

Log Trace
Event Event
Notifier Generator

Figure 4: Document Description Language Interpreter

1.3.5 Document Descrition Language Parser

Parse a text description of a section of a document and generate the corresponding byte
code.

This component has the following responsibilities:

Parse Document Description Language: Parse the textual representation of
the document description to produce the byte code for the interpreter. See
Interpreted Language.

Document
Modeller

is part of

Document

Descrition

Language
Parser

%:Jsed by&s used

Log Trace
Event Event
Notifier Generator

isused by isused by

Figure 5: Document Descrition Language Parser

1.3.6 Diagram Modeller

Builds an internal representation for diagrams.

1 CONCEPTUAL MODEL 1.3 Concept Modules

This component has the following responsibilities:
Diagram Layout: Organises the objects of the diagram by determining their po-
sitions and the routes for the interconnections. See Build Diagrams.

Diagram Modelling: Builds an internal representation of a diagram from data
extracted from the ontology. See Build Architecture Model and Build Dia-
grams.

Document
Generator

‘&part of

] Diagram
is part of Modeller

i used by @;dby iss used by

OowL A .
Interface isused by \ isused by

A

sused by isused by

Log Trace
Event Event
Notifier Generator

Figure 6: Diagram Modeller

1.3.7 Document Formatter

Converts the internal representation of a document into the final version.
This component is implemeted with SASSY Document Formatter.

This component has the following responsibilities:

Formatting the Document: This module is responsible for converting the in-
ternal representation of the document into its final format. See Generate
Architecture LaTeX, Generate Data Dictionary LaTeX, Generate Quality At-
tribute LaTeX and Generate Requirements LaTeX.

1.3.8 Document Generator

Manages the process of generating a document from the ontology data.
This component is implemeted with saDocGen.

This component has the following responsibilities:

Generating Documents: Responsible for coordinating the process of generating
the document.

View Selection: Allow the user to select which views to include in the architec-
ture document. See Build Architecture Model and Build Diagrams.

99

1.3 Concept Modules 1 CONCEPTUAL MODEL

Document
Generator

spart of

Document

isusedby | Formater

isused by

isused by fis used by \\is used by

Log Trace
Event Clrje?atFor Event
Notifier Generator

Figure 7: Document Formatter

SASSY

A
is part of

Document
Generator

ispart of

Diagram : Document :
Modeller ispart of Modeller ispart of
s used by ‘@by /us;dby is used by
isusedby |isusedby | ONL isused by \ is used by Docurient
isused by isu isused by isused by
Log Trace
Event Event
Notifier Generator

Figure 8: Document Generator

1.3.9 Document Modeller

Builds an internal representation of the text of the document.
This component is implemeted with SASSY Document Modeller.

This component has the following responsibilities:

Architecture Document Modelling: Build an internal representation of the ar-
chitecture document based on the contents of the ontologies. See Build Ar-
chitecture Model and Collect Architecture Text.

Dictionary Document Modelling: Build an internal representation of the data
dictionary document based on the contents of the ontologies. See Build Dic-
tionary Model.

Document Modelling: Build a representation of the document based on the con-
tents of the ontologies.

60

1 CONCEPTUAL MODEL 1.3 Concept Modules

Quality Attribute Document Modelling: Build an internal representation of
the quality attribute document based on the contents of the ontologies. See
Build Quality Attribute Model.

Requirements Document Modelling: Build an internal representation of the
requirements document based on the contents of the ontologies. See Build
Requirements Model.

View Selection: Allow the user to select which views to include in the architec-
ture document. See Build Architecture Model and Build Diagrams.

Document
Generator
is part of
Document]
Modeller is part of
\,
is part of/spartof isused by is used by
Document Document
: Descrition Description : OwWL
isused by Language Language is used by Interface
Interpreter v

isused by ~“isused by by /isused by

Log Trace
Event Event
Notifier Generator

Figure 9: Document Modeller

1.3.10 Log Event Notifier

Formats a message and sends it to the logging service.

This component has the following responsibilities:

Generate Log Events: Create a log message whenever any unusual event occurs.
See Logging.

1.3.11 Logger
Writes log events to permanent storage.
This component is implemeted with sal.ogger.

This component has the following responsibilities:

Logging Events: Saving the log messages to persistent storage. See Execution
Tracing and Logging.

61

1.3 Concept Modules 1 CONCEPTUAL MODEL

Document
User
Interface Generaor

‘&usedby {s part of is part of
OwL Diagram ocument
Viewer Modeller Mode!ler
is used by | is used by is used by ngrtrj\r;ter is part of
Document
OWL N Descrition A
is part of Language isused by
Parser

Document
Configuration . . . Description "
isused by isused by |isused by Language isused by
Interpreter
Administration : owL] .
isused by Database isused by isused by
isused b Isused by
Log
1 Event
Notifier
isused by

Logger

Figure 10: Log Event Notifier

Log Trace
Event SASSY Event
Notifier 7 Generator
isused by spany:used by
Logger

Figure 11: Logger

1.3.12 OWL Database

A collection of ontologies.

This component has the following responsibilities:

Storing OWL Data: The ontology data must be stored in a persistent database.
See Database Transactions.

1.3.13 OWL Gui

Enables the user to enter and organise the ontology data.

This component is implemeted with Protege.

62

1 CONCEPTUAL MODEL 1.3 Concept Modules

SASSY
ispart of
OowL A OowL
Interface ispartof | g
isused by isused by
. OowL
is used by Database
isused by ispart of “ispart of /ispart of fispart of \is part of ispart of ispart of isused by ispart of
EI;/%%I Configuration Ea?a’gz Products /Sttur?Ibltu)lle ’ Requirements Tactics Traceability ‘ ’ Version Architecture
Notifier Ontology Ontology Ontology ontology Ontology Ontology Ontology Control Ontology

Figure 12: OWL Database

This component has the following responsibilities:

Entering the Model: This module is responsible for allowing the user to enter
the model. See Build Ontology.

SASSY

is part of

SASSY
is part of User
Interface

fs used by is part of

OowL
Gui

ku%d by

OowL
Database

Figure 13: OWL Gui

1.3.14 OWL Interface

Provides an abstraction layer between the OWL API and the programs.

This component is implemeted with ICE.

This component has the following responsibilities:

Interfacing to OWL Data: Responsible for collecting the data from the database
in a form suitable for the document modelling.

63

1.3 Concept Modules 1 CONCEPTUAL MODEL

Remote Procedure Calls: An ability to make a call to a procedure hosted in

another process, possibly on another machine. See Use Network Interfaced
Components.

Document
Generator

spart of \is part of

; Diagram Document
1Spartol s \odeller Modeller

isused by isused by igused by

i used by ot is used by [is used by

is used by isused by _is used by isused by

Trace
) OWL
isused by Event
Database Generator

Log

%:wd by
Event

Notifier

Figure 14: OWL Interface

1.3.15 Operating System

The software that interfaces the hardware of a computer to its applications through a
standardised API.

This component is implemeted with Fedora Linux.

This component has the following responsibilities:
Installing Fedora Linux: This component is responsible for providing a copy of
Fedora Linux that is suitable configured and has the correct software. See

Develop On Fedora Linux.

Limiting File Access: Only authorised users will be able to access files. See
Restrict Database Access.

1.3.16 OWL Viewer

Enables the user to view an OWL ontology in some detail.

This component is implemeted with owl-view.

64

1 CONCEPTUAL MODEL 1.3 Concept Modules

Administration
Manager

sused by

Operating
System

Figure 15: Operating System

This component has the following responsibilities:

Visualizing the Model: This module is responsible for displaying the model to
the user. See High Visibility Processing.

SASSY
ispart of
SASSY
is part of User
Interface
ﬁz’ed by
OowL
Viewer
A;d by is used by
OWL .
Interface is used by
b by
Log
Event
Notifier

Figure 16: OWL Viewer

1.3.17 PDF Creator
Convert DVI into PDF files.

This component is implemeted with dvipdfm.

This component has the following responsibilities:

Converting DVI to PDF: DVI files are rendered to PDF. See Generate PDF.

1.3.18 PDF Viewer

Enables the user to view a PDF document.

1.3 Concept Modules 1 CONCEPTUAL MODEL

Document
Formatter

is used by

PDF
Cresator

Figure 17: PDF Creator

This component is implemeted with evince.

This component has the following responsibilities:

View Documents: Responsible for allowing the user to view the generated doc-
uments. See Document View.

SASSY
User
Interface

sused by

PDF
Viewer

Figure 18: PDF Viewer

1.3.19 SASSY

The complete software architecture support system.

This component has the following responsibilities:

Capturing the Software Architecture: This component is reponsible for cap-
turing, storing and publishing the architecture of a software system.

1.3.20 SASSY User Interface
Enables the user to select parameters for documents and initiate the production of the
documents.

This component is implemeted with SASSY GUI.

This component has the following responsibilities:

The User Interface: This component is responsible for allowing the user to easily
interact with the application. It should provide enough information to allow
the user to select the appropriate actions. See High Visibility Processing,
Provide Administration Interface, Provide Fast Feedback and Requirements
User Interface.

66

1 CONCEPTUAL MODEL 1.3 Concept Modules

SASSY
is part of ispart of (is part of ispart of
Administration Document : : :
Manager Generator Logger ispart of is part of Imtérsferaoe is part of
is part of isused by /isused by&usedby
OwL Configuration OwL

Gui Manager Viewer

isused by

OwL
Database

Figure 19: SASSY

View Selection: Allow the user to select which views to include in the architec-
ture document. See Build Architecture Model and Build Diagrams.

SASSY

ispart of

SASSY
ispart of |is part of User is part of
Interface
isused by fis used by isused by “_is used by
OwL OwL . PDF Configuration .
Viewer Gui Browser is used by Viewer Manager i used by
isused by Isused by %uwdby
Log Trace
Event Event
Notifier Generator

Figure 20: SASSY User Interface

1.3.21 Trace Event Generator

Manage the generation of trace events.

This component has the following responsibilities:

Generate Trace Events: Send a message to the logger at the start and end of
each function. See Execution Tracing and High Visibility Processing.

1.3.22 Version Control

Provides the ability to manage and control the versioning of the data.

67

1.3 Concept Modules 1 CONCEPTUAL MODEL

Document
Generator

SASSY
User ispart of DMoggglaewrt
Interface

isused by

Document Document
Description Descrition
Language Language
Interpreter Parser

Configuration
Manager

Administration
Manager

Event
Generator

sused by
Logger

Figure 21: Trace Event Generator

This component has the following responsibilities:

Provide Version Control: Responsible for providing version control. See Use
Version Control.

Configuration OWL
Manager Database

&used k%‘s used by

Version
Control

Figure 22: Version Control

1.3.23 Ontology
A collection of related information for SASSY.

This component has the following responsibilities:
Organising Data:
1.3.24 Project Ontology
An ontology containing project specific data.

This component has the following responsibilities:

68

1 CONCEPTUAL MODEL 1.3 Concept Modules

Project Reference
Ontology Ontology

Ontology

Figure 23: Ontology

Project
Ontology

isa isa/‘sa b\sa isa isa

Architecture Configuration Dictionary Requirements Traceability
Ontology Ontology Ontology Ontology Ontology

Ontology

Figure 24: Project Ontology

1.3.25 Architecture Ontology

An ontology that captures the architecture of the system.

This component is implemeted with Architecture Ontology and SASSY Ontology.

This component has the following responsibilities:

Architectural Data: This ontology is responsible for the architectural data for
the system under development. See Single Threaded Design and Use COTS
Products.

Build Architecture Ontology: Construction of an ontology of architectural in-
formation. See Build Ontology.

Build View Ontology: Construct an ontology of views and viewpoints from which
the architecture of a system can be described.

owL Project
Database Ontology

ispa't(%‘sa

Architecture
Ontology

Figure 25: Architecture Ontology

1.3.26 Configuration Ontology

An ontology that captures the relationships between the components of the system for the
purpose of managing which are valid configurations.

69

1.3 Concept Modules 1 CONCEPTUAL MODEL

This component has the following responsibilities:

Build Configuration Ontology: Construction of an ontology of configuration
data for the project. See Build Ontology.

Configuration Data: This ontology is responsible for the configuration data for
the system under development. This includes capturing the versions of com-
ponents.

OWL Project
Database Ontology

ispartc%sa

Configuration
Ontology

Figure 26: Configuration Ontology

1.3.27 Dictionary Ontology

An ontology that is the glossary or data dictionary for the project. It contains the project
specific terminology.

This component is implemeted with Dictionary Ontology.

This component has the following responsibilities:

Build Data Dictionary Ontology: Construction of a dictionary or glosary of
terms used by the project. See Build Ontology.

Project
Ontology
A
isa

Dictionary
Ontology

Figure 27: Dictionary Ontology

1.3.28 Requirements Ontology

An ontology that documents the requirements for SASSY.

This component is implemeted with Requirements Ontology.

70

1 CONCEPTUAL MODEL 1.3 Concept Modules

This component has the following responsibilities:

Build Requirement Ontology: Construction of an ontology of the requirements
for the project. See Build Ontology.

Requirements Data: This component is responsible for storing an ontology of
the requirements for the project.

OWL Project
Database Ontology

ispanc%‘sa

Requirements
Ontology

Figure 28: Requirements Ontology

1.3.29 Traceability Ontology

An ontology that captures how the requirements are implemented through the design and
code.

This component has the following responsibilities:

Build Traceability Ontology: Construct an ontology showing how requirements
map through the design and code. See Build Ontology.

Traceability Data: The component is responsible for allowing the user to trace
a requirement through the design to the implementing code or configuration
data.

OowL Project
Database Ontology

ispancr/isa

Traceability
Ontology

Figure 29: Traceability Ontology

1.3.30 Reference Ontology

Ontologies that are generic to the Software Architecture discipline. These are provided for
the user to reference while building thier project ontologies.

This component has the following responsibilities:

1.3.31 Design Pattern Ontology

An ontology of well known architectural design patterns.

71

1.3 Concept Modules 1 CONCEPTUAL MODEL

Reference
Ontology
[
isa isa /isa |s N isa
Design ualit : :
Patte%n Dec\)/r?tlglp(:)rgyent Ontology g';]?gﬂ%; A?tri bu¥e &?g?ocgy Or\1/t::)(la(l)vgy
Ontology Ontology

Figure 30: Reference Ontology

This component is implemeted with Architecture Ontology.

This component has the following responsibilities:

Build Design Pattern Ontology: Construct an ontology of well known archi-
tectural design patterns. Show which tactics they are used to implement. See

Build Ontology.

Design Pattern Data: This component is responsible for storing an ontology of
well known architectural design patterns.

OowL Reference
Database Ontology

‘\spart(%‘sa

Design
Pattern
Ontology

Figure 31: Design Pattern Ontology

1.3.32 Development Ontology

An ontology covering the development environment for the project. It will include the
development processand the development team.

This component is implemeted with Development Ontology.

This component has the following responsibilities:

The Development Methodology: Responsible for defining the set of tasks and
their relationships to be undertaken for the project. See Spiral Development.

The Increment Plan: Resposible for specifying the work to be done during each
increment of the development. See Spiral Development.

1.3.33 Products Ontology

An ontology of products useful for implementing systems.

72

1 CONCEPTUAL MODEL 1.3 Concept Modules

Reference
Ontology

sa

Development
Ontology

Figure 32: Development Ontology

This component has the following responsibilities:

Build Product Ontology: Construct an ontology of products that might be use-
ful for inclusion in the project. Show links to the tactics that the products
can be used to implement. See Build Ontology.

Product Data: This component contains an ontology of software products. It is
likely that there will be a collection of such ontologies tailored to particular
problem domains since a complete catalogue of all known products would be
too extensive.

OWL Reference
Database Ontology

‘kpart(%‘sa

Products
Ontology

Figure 33: Products Ontology

1.3.34 Quality Attribute Ontology

An ontology of quality attributes that a system might need to have.
This component is implemeted with Quality Attribute Ontology.

This component has the following responsibilities:

Build Quality Attribute Ontology: Construction of an ontology of known qual-
ity attributes and the various quality models proposed in the literature. See
Build Ontology.

Quality Attribute Data: This component is responsible for storing an ontology

of known quality attributes which can be referenced when developing the
requirements for the system.

1.3.35 Tactics Ontology

An ontology of well known tactics for achieving certain quality requirements and the re-
sponsibilities that those tactics bring.

73

1.3 Concept Modules 1 CONCEPTUAL MODEL

OowL Reference
Database Ontology

‘\spartc%‘sa

Quality
Attribute
Ontology

Figure 34: Quality Attribute Ontology

This component is implemeted with Tactics Ontology.

This component has the following responsibilities:

Build Tactics Ontology: Construct an ontology of well known software develop-
ment tactics. Include references to the quality attributes that they address.

See Build Ontology.

Tactics Data: This component is responsible for storing the tactics ontology which
is available for reference during the development of the architecture.

OowL Reference
Database Ontology

&part (%isa

Tactics
Ontology

Figure 35: Tactics Ontology

1.3.36 View Ontology

An ontology of software architecture views and viewpoints.
This component is implemeted with Architecture Ontology.

This component has the following responsibilities:

Reference
Ontology

isa

View
Ontology

Figure 36: View Ontology

74

1 CONCEPTUAL MODEL 1.4 Methodology

1.4 Methodology

The methodology outlines all the potential tasks that a software project might need. It is
important, however, for the project manager to tailor these tasks according to the needs of
the particular project.

1.4.1 SASSY Plan

The plan for the development of SASSY.

SASSY will start off as a one-person project until it has a basic set of functionality and
can demonstrate its usefulness. It will be done in private at first, perhaps with some reviews
by interested others. Later it will be uploaded to SourceForge so that it can be further
reviewed by others, and eventually so that development can be shared.

The development will use a spiral model with multiple increments that expand both the
functionality and the quality of the system.

Spiral Development Model: A development model that makes stepwise improvements
in both the functionality and quality of the system.

The spiral model attempts to get early increments delivered more quickly by using less or
lower quality infrastructure. The project thus advances in two dimensions at once - quality
and functionality.

The main danger is that the initial low quality increments might give the project a bad
reputation, so it might be better to keep the first few as demonstration only versions rather
than as actual releases.

Increment 0: The aim of the first increment is to put into place the development environ-
ment and to provide a very rough sketch of what the project will look like.

It will consist of a quick pass through the methodology tasks to establish a first cut for
each task.

Increment 1: The aim of the second increment is to demonstrate that we can generate
documentation from the contents of an ontology.

Increment 2: This increment will see a rough version of the entire system developed. It
may use various short-cuts and other lower quality tactics but it should result in a simplified
version of the final product.

Increment 3: This increment adds some refinements to the system. Cross references be-
tween the logical and conceptual models will be added where both models have been re-
quested. The code will be re-factored and generally cleaned up. Diagrams will be scaled and
oriented based on their size and shape.

Increment 4: This increment will add a query language to the design. Views will be
defined in terms of a query on the ontology database. We will attempt to use SPARQL-DL,
or develop a simple query language of our own if that proves unreliable. We will also add
sufficient complexity to the ontologies to verify that the views work.

Increment 5: Add ontologies for Design Patterns, Frameworks, Products, etc. Re-factor
existing tactical, conceptual and logical views. A full end-to-end example of an architecture
will be produced.

1.4 Methodology 1 CONCEPTUAL MODEL

Increment 6: This increment will add some process management so that server process
are started automatically.

Increment 7: Improve maintainability by developing the logging and code tracing compo-
nents.

Increment 8: This increment will add support for multiple projects. The SASSY specifics
will be split out.

Allow users to define some project specific data, probably held in an XML file. Set up
templates for creating new projects.

Test by setting up several new projects which can be used as test data, such as HPIDA,
APH and I21.

1.4.2 Process

The process is the means by which the project manager controls the development of the
system.

Change Control: Ensuring that all changes to the system are the result of careful analysis
and are done with known impacts.

Knowledge Control: Control of information distribution within the project. Ensuring
that everyone knows what they need to know to get their tasks done.

Progress Control: Control of how fast the work is getting done. The essential ingredients
are the measurement of what has been done and the estimation of what remains to be done.

Quality Control: Ensuring that the system is delivered with a minimum number and
severity of defects.

1.4.3 Activity

An action that is performed as part of construction the system. Usually it will have well
defined boundaries.

Vision Statement: A vision statement sets the goals for the project. It puts forward an
idea for others to consider. It will usually outline the problems that need to be addressed
and suggest some sort of solution.
The vision statement remains an important document for the life of the project. It should
be the first document that is read when wanting to understand what a project is all about.
A vision statement can also help to keep a project constrained to its original goals and
help prevent scope creep.

This task produces the following deliverables:

Vision Statement: A document describing the aims and purpose of the project.

76

1 CONCEPTUAL MODEL 1.4 Methodology

Preliminary Analysis: This task elaborates and clarifies the clients statement of need.
It allows the client to tell if the analyst has really understood the problem.

Discuss with the domain experts and do research into similar problems. Investigate the
implications of the requirements.

From the article ”Making a success of preliminary analysis using UML”

It is necessary to define the application domains on which a system is to be put in
place, and the processes that the system must support. Terminology, definitions and domain
boundaries are clarified, in order to explain the problem in a clear context. In this domain,
functioning modes must be explained, in the form of business procedures, but also in the
form of rules and business constraints.”

One of the outputs of the preliminary analysis task is the first draft of the project data
dictionary or glossary.

This task uses the following deliverables:

Vision Statement: A document describing the aims and purpose of the project.

This task produces the following deliverables:

Glossary: The glossary or data dictionary can be either a document or generated
from the contents of a database. It contains the terms that have special
meanings within the context of the project.

Preliminary Analysis: A document that defines the application domains on which
a system is to be put in place, and the processes that the system must support.

Terminology, definitions and domain boundaries are clarified, in order to ex-
plain the problem in a clear context. In this domain, functioning modes must
be explained, in the form of business procedures, but also in the form of rules
and business constraints.

Feasibility Study: The primary purpose of a feasibility study is to demonstrate that there
is at least one viable solution to the problem. For a solution to be viable it will need to be
realizable with the resources available and technically possible to implement.

A feasibility study should concentrate on the technically novel components of the system.
There is no point in re-examining things which are readily available such as web servers or
databases.

It is not necessary for the study to produce the best solution, just one which satisfies
the minimum requirements, or which demonstrates that with more development effort a
satisfactory solution should be possible.

This task uses the following deliverables:
Preliminary Analysis: A document that defines the application domains on which
a system is to be put in place, and the processes that the system must support.

Terminology, definitions and domain boundaries are clarified, in order to ex-
plain the problem in a clear context. In this domain, functioning modes must
be explained, in the form of business procedures, but also in the form of rules
and business constraints.

Vision Statement: A document describing the aims and purpose of the project.

7

1.4 Methodology 1 CONCEPTUAL MODEL

This task produces the following deliverables:

Feasibility Study: A document that reports on the results of a study into the
viability of the project as described in the vision statement.

Modelling: This task applies when there is some existing system that is being replaced.
The existing system might be automated, or entirely manual paper based, but either way it
is important to document what it does before we try to reproduce it.

From the article ”Making a success of preliminary analysis using UML”

” An analysis of what already exists must be carried out, by representing it as a system
whose structure, roles, responsibilities and internal and external information exchanges are
shown. All preliminary information must be collected, in the form of documents, models,
forms or any other representation. The nature of the products developed by the processes is
explained.

This task uses the following deliverables:

Preliminary Analysis: A document that defines the application domains on which
a system is to be put in place, and the processes that the system must support.

Terminology, definitions and domain boundaries are clarified, in order to ex-
plain the problem in a clear context. In this domain, functioning modes must
be explained, in the form of business procedures, but also in the form of rules
and business constraints.

This task produces the following deliverables:

Existing System Model: A document containing an analysis of what already
exists represented as a system whose structure, roles, responsibilities and
internal and external information exchanges are shown.

All preliminary information must be collected, in the form of documents,
models, forms or any other representation. The nature of the products devel-
oped by the processes is explained.

Requirements Gathering: This task involves creating a formal list of things that the
proposed system must accomplish. The list should have a well defined numbering system so
that requirements can be unambiguously referred to for the remainder of the project, and
beyond into the maintenance phase.

The functional requirements list what the system is supposed to do. These are usually
the things that most interest the users of the system.

The environmental requirements describe the environment in which the system must
operate. For example the system might have to operate using Windows based computers, or
it might have to operate in an aeroplane.

The quality (or non-functional) requirements will drive the architecture of the system.
Obtain the limits on the performance (speed and size), security, safety, and resource usage
(disk, memory, band-width). Determine the availability requirements, how modifiable the
system must be, the ease with which it can be built and tested. Consider how soon the
product must be delivered. Usability is often an important requirement. This needs to be
considered for the various users of the system, from the occasional user to the power user.
Describe what is required to administer the system.

78

1 CONCEPTUAL MODEL 1.4 Methodology

This task uses the following deliverables:

Existing System Model: A document containing an analysis of what already
exists represented as a system whose structure, roles, responsibilities and
internal and external information exchanges are shown.

All preliminary information must be collected, in the form of documents,
models, forms or any other representation. The nature of the products devel-
oped by the processes is explained.

Feasibility Study: A document that reports on the results of a study into the
viability of the project as described in the vision statement.

Preliminary Analysis: A document that defines the application domains on which
a system is to be put in place, and the processes that the system must support.

Terminology, definitions and domain boundaries are clarified, in order to ex-
plain the problem in a clear context. In this domain, functioning modes must
be explained, in the form of business procedures, but also in the form of rules
and business constraints.

This task produces the following deliverables:

Glossary: The glossary or data dictionary can be either a document or generated
from the contents of a database. It contains the terms that have special
meanings within the context of the project.

Requirements: A document, or other database, containing a list of all the re-
quirments for the proposed system. It should contain functional, environ-
mental and quality based requirments; it should uniquely identify each one;
and it should indicate the desirability of each requirement.

Project Tools: This task is one that is on-going for the life of the project. It is responsible
for setting up and maintaining the various tools that the project will use.

Initially this might be just a word processor, but it will expand to include version control
products, project planning programs, development environments, and so on.

At the very least it should include a list of what tools are necessary to build the system.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

Preliminary Analysis: A document that defines the application domains on which
a system is to be put in place, and the processes that the system must support.

Terminology, definitions and domain boundaries are clarified, in order to ex-
plain the problem in a clear context. In this domain, functioning modes must
be explained, in the form of business procedures, but also in the form of rules
and business constraints.

79

1.4 Methodology 1 CONCEPTUAL MODEL

This task produces the following deliverables:

Project Tools: A document describing how each product that the project uses is
managed. This includes how its obtained, installed, and backed up.

Architecture: This task is concerned with the design problems that go beyond the selec-
tion of algorithms and data structures, concentrating on the overall structure of the system.

Structural issues include gross organization and global control structure; protocols for
communication, synchronization, and data access; assignment of functionality to design ele-
ments; physical distribution; composition of design elements; scaling and performance; and
selection among design alternatives.

The output of this task includes multiple views (eg concept model, network model database
distribution, etc), a list of the products that will form part of the delivered system, and the
specification for the interfaces between major internal components.

This task uses the following deliverables:

Existing System Model: A document containing an analysis of what already
exists represented as a system whose structure, roles, responsibilities and
internal and external information exchanges are shown.

All preliminary information must be collected, in the form of documents,
models, forms or any other representation. The nature of the products devel-
oped by the processes is explained.

Feasibility Study: A document that reports on the results of a study into the
viability of the project as described in the vision statement.

Preliminary Analysis: A document that defines the application domains on which
a system is to be put in place, and the processes that the system must support.

Terminology, definitions and domain boundaries are clarified, in order to ex-
plain the problem in a clear context. In this domain, functioning modes must
be explained, in the form of business procedures, but also in the form of rules
and business constraints.

Requirements: A document, or other database, containing a list of all the re-
quirments for the proposed system. It should contain functional, environ-
mental and quality based requirments; it should uniquely identify each one;
and it should indicate the desirability of each requirement.

This task produces the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

80

1 CONCEPTUAL MODEL 1.4 Methodology

Interface Stubs: For each interface create facade classes for each module. Add stub code
that allows each interface to be called and return default values. Define the abstract interface
classes and stub interface classes for any callback style interfaces.

Create test harnesses that call these interfaces. These will evolve into test harnesses for
the modules. The aim is to be able to develop each module in isolation from the other
modules.

This task has the useful side effect of getting the programmers involved in some actual
development very early in the process.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

This task produces the following deliverables:

Interface Stubs: Software which imitates that interfaces defined in the architec-
ture of the system.

For each interface there will be a code module which can take the place of
each end of the interface. There will also be a test harness that can imitate
the other side of each interface.

Component Exploration: Third party products rarely behave exactly as expected, or
they may be new to the developers. They need to be well understood if they are to be used
successfully.

Build test programs to demonstrate how the components work together. Document the
criteria required to get them to inter-operate as required for the project.

Note that there is some danger that the client will modify their requirements when they
see what the products are capable of.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

This task produces the following deliverables:

Component Report: A set of documents that report on the investigation into
each third party component that was identified in the architecture of the
proposed system.

The report should include how the product is obtained and installed, as well
as the license conditions applicable to the product.

The report should describe how to test the product to ensure that it meets
the requirements of the project.

81

1.4 Methodology 1 CONCEPTUAL MODEL

Migration Planning: Most systems will start life with a body of data that was captured
by its predecessors. That data needs to be converted and loaded into the new system. This
task describes how that is to be achieved. We do this early so that the ability to load data
is designed in from the beginning.

Determine which data will be useful, and organise how it will be extracted from the
existing system and loaded into the new one. Determine how the data will be cleaned up to
get rid of incorrect values.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

Existing System Model: A document containing an analysis of what already
exists represented as a system whose structure, roles, responsibilities and
internal and external information exchanges are shown.

All preliminary information must be collected, in the form of documents,
models, forms or any other representation. The nature of the products devel-
oped by the processes is explained.

Requirements: A document, or other database, containing a list of all the re-
quirments for the proposed system. It should contain functional, environ-
mental and quality based requirments; it should uniquely identify each one;
and it should indicate the desirability of each requirement.

This task produces the following deliverables:

Data Migration Plan: A document describing how the existing data in the ex-
isting systems will be transferred to the new proposed system.

The document should include an estimate of how much data is involved, and
how long the conversion process might take.

Test Planning: For every outcome of each use case (for the current increment), describe
the test cases, this includes the number of tests, how the pre-condition state will be achieved,
and how the post-condition state will be validated. Break this into sections for acceptance
testing, system testing, integration testing and unit testing.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

82

1 CONCEPTUAL MODEL 1.4 Methodology

Component Report: A set of documents that report on the investigation into
each third party component that was identified in the architecture of the
proposed system.

The report should include how the product is obtained and installed, as well
as the license conditions applicable to the product.

The report should describe how to test the product to ensure that it meets
the requirements of the project.

Requirements: A document, or other database, containing a list of all the re-
quirments for the proposed system. It should contain functional, environ-
mental and quality based requirments; it should uniquely identify each one;
and it should indicate the desirability of each requirement.

This task produces the following deliverables:

Test Plan: For every outcome of each use case (for the current increment), de-
scribe the test cases, this includes the number of tests, how the pre-condition
state will be achieved, and how the post-condition state will be validated.
Break this into sections for acceptance testing, system testing, integration
testing and unit testing.

Application Specification: The aim is to ensure that everything the programmer needs
to know is properly defined.

For each use case describe how each system attribute is changed.

The deliverables include use case descriptions, class diagrams, details of any complex
algorithms, and an updated data dictionary.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

Requirements: A document, or other database, containing a list of all the re-
quirments for the proposed system. It should contain functional, environ-
mental and quality based requirments; it should uniquely identify each one;
and it should indicate the desirability of each requirement.

This task produces the following deliverables:

Class Diagrams: A diagram showing the inheritance and other interactions be-
tween the classes in an object oriented design.

Glossary: The glossary or data dictionary can be either a document or generated
from the contents of a database. It contains the terms that have special
meanings within the context of the project.

Use Case Description: A description of the interactions between a system and
its users.

83

1.4 Methodology 1 CONCEPTUAL MODEL

User Interface Design: Design the user interfaces for the system based on the use cases.
This can be done with a user interface design program which can then generate the classes
necessary to run the interface.

The resulting UI can then be used to confirm the use cases by demonstrating the system
to the users. Obviously you will inform them that this is just the UI and that there is nothing
actually working yet.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

Class Diagrams: A diagram showing the inheritance and other interactions be-
tween the classes in an object oriented design.

Use Case Description: A description of the interactions between a system and
its users.

This task produces the following deliverables:

User Interface Design: A document showing the layout of each screen of the
proposed system, and the navigation paths between those screens.

The design might also include a prototypical version of the screens to enable
a demonstration of some of the more important use cases.

Test Case Design: In this step we develop the test harness. This is done prior to code
development so that coding has something to test against.

Write the tests with input values based on the use case parameters in the precondition set
up. Evaluate the return code for completeness and correctness, and log any discrepancies.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

Class Diagrams: A diagram showing the inheritance and other interactions be-
tween the classes in an object oriented design.

Use Case Description: A description of the interactions between a system and
its users.
This task produces the following deliverables:

Test Harness: Software designed to exercise another piece of software.

The test harness should put the software under test through each applicable
use case and document the results of the test.

84

1 CONCEPTUAL MODEL 1.4 Methodology

Use Case Design: Here we document the flow of information in the system. With an OO
design it can be difficult to understand the interactions between objects, so we document
that here.

Most texts will suggest that sequence diagrams are the correct tool for this task. However
its been my experience that these diagrams are tedious and messy to construct, and very
quickly become difficult to follow in all but the simplest scenarios. I prefer to use collabo-
ration diagrams as they can more easily show the flow of control for complex systems. It is
also possible to convert trace data from a running system into collaboration diagrams, thus
documenting the real situation.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

Class Diagrams: A diagram showing the inheritance and other interactions be-
tween the classes in an object oriented design.

Use Case Description: A description of the interactions between a system and
its users.

User Interface Design: A document showing the layout of each screen of the
proposed system, and the navigation paths between those screens.

The design might also include a prototypical version of the screens to enable
a demonstration of some of the more important use cases.

This task produces the following deliverables:

Use Case Design: A document containing sequence or collaboration diagrams
that describes how the classes in the system will interact for each use case.

System Test Support Design: Just as modern hardware has Power On Self Test, so
should a software system. If we build support for system testing into the applications we can
speed the testing phase, and thus get the project completed sooner.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

Class Diagrams: A diagram showing the inheritance and other interactions be-
tween the classes in an object oriented design.

Use Case Description: A description of the interactions between a system and
its users.

1.4 Methodology 1 CONCEPTUAL MODEL

This task produces the following deliverables:

System Test Support Design: A document that describes the interfaces that
the system test harnesses can use to exercise the internals of the system.

Persistent Storage Design: We need to define the format, and rules, that apply to the
storage of the applications data. This usually involves experts in the storage component, and
can to some extent be started prior to the application specific work. It will usually involve
creating some additional classes to interface the application specific classes to the storage
mechanisms.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

Class Diagrams: A diagram showing the inheritance and other interactions be-
tween the classes in an object oriented design.

Use Case Description: A description of the interactions between a system and
its users.

Use Case Design: A document containing sequence or collaboration diagrams
that describes how the classes in the system will interact for each use case.

This task produces the following deliverables:

Database Schema: A document containing the schema for the databases used
by the system.

There will be physical schema showing the actual table layouts and logical
schema showing the views that are to be used by the application programs.

Class Design: Based on the method specifications and use case design, document each
attributes visibility, type, and initial value and for each method in the class document its
signature, visibility, and type.

Review the design against established design patterns to ensure that the design is com-
plete.

You may be required to do this step in a design tool, but my preference, when developing
C++ code is to do this step by creating the header files for the classes and including stub
versions of the implementation with comments describing the intended design.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

86

1 CONCEPTUAL MODEL 1.4 Methodology

Class Diagrams: A diagram showing the inheritance and other interactions be-
tween the classes in an object oriented design.

Database Schema: A document containing the schema for the databases used
by the system.
There will be physical schema showing the actual table layouts and logical

schema showing the views that are to be used by the application programs.

System Test Support Design: A document that describes the interfaces that
the system test harnesses can use to exercise the internals of the system.

Use Case Description: A description of the interactions between a system and
its users.

Use Case Design: A document containing sequence or collaboration diagrams
that describes how the classes in the system will interact for each use case.

User Interface Design: A document showing the layout of each screen of the
proposed system, and the navigation paths between those screens.

The design might also include a prototypical version of the screens to enable
a demonstration of some of the more important use cases.

This task produces the following deliverables:

Class Design: Stub versions of the methods for each class containing a description
of what the method is supposed to achieve.

Code Generation: Many large systems will have a fair amount of code that can be gen-
erated from significantly simpler descriptions of data structures. You should review your
design at this point to determine if there are any candidates for code generation (before some
poor programmer tries to write them by hand).

This task uses the following deliverables:

Class Design: Stub versions of the methods for each class containing a description
of what the method is supposed to achieve.

This task produces the following deliverables:

Code Generator: Software that generates standard methods for some set of classes.
Typically database access methods are done this way.

Design Review: Conduct reviews of the design documentation to ensure that the require-
ments will be satisfied, the architectural guidelines have been followed and that design is
complete and efficient.

87

1.4 Methodology 1 CONCEPTUAL MODEL

This task uses the following deliverables:

Class Design: Stub versions of the methods for each class containing a description
of what the method is supposed to achieve.

Use Case Design: A document containing sequence or collaboration diagrams
that describes how the classes in the system will interact for each use case.

User Interface Design: A document showing the layout of each screen of the
proposed system, and the navigation paths between those screens.

The design might also include a prototypical version of the screens to enable
a demonstration of some of the more important use cases.

This task produces the following deliverables:

Review: A document that describes what was reviewed, who did the review, when,
and what was done with respect to each comment that was made by the
reviewers.

Implementation: Fill in the details of each method, and add test cases to the test harness
to exercise any that are non-trivial.

The coding should be guided by a set of coding standards. You should include error
handling from the first cut of the code so you can tell if its working correctly. My usual
approach is to start with a simple error message with file name and line number to the
console on the first cut and then add more sophisticated error handling in subsequent rounds
of development.

The code should be reviewed by other team members. This provides a mechanism to
spread the knowledge of how the system works across a broader cross section of the team.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

Class Design: Stub versions of the methods for each class containing a description
of what the method is supposed to achieve.

Class Diagrams: A diagram showing the inheritance and other interactions be-
tween the classes in an object oriented design.

Database Schema: A document containing the schema for the databases used
by the system.

There will be physical schema showing the actual table layouts and logical
schema showing the views that are to be used by the application programs.

Glossary: The glossary or data dictionary can be either a document or generated
from the contents of a database. It contains the terms that have special
meanings within the context of the project.

88

1 CONCEPTUAL MODEL 1.4 Methodology

Test Harness: Software designed to exercise another piece of software.
The test harness should put the software under test through each applicable
use case and document the results of the test.

Use Case Description: A description of the interactions between a system and
its users.

Use Case Design: A document containing sequence or collaboration diagrams
that describes how the classes in the system will interact for each use case.

User Interface Design: A document showing the layout of each screen of the
proposed system, and the navigation paths between those screens.

The design might also include a prototypical version of the screens to enable
a demonstration of some of the more important use cases.

This task produces the following deliverables:
Build Scripts: The scripts used to convert the source code into libraries and
executable programs.
Data Sets: Data that is required to control the programs of the system.
This includes configuration data and reference data that is required to make
the system operational.

Executable Program: Instructions for a computer in its native format.

Libraries: Executable instructions for a computer that are loaded with a program
to provide additional functionality.

Scripts: Instructions for a computer written in the language of some interpreter.

Source Code: A file containg the text form of the computer instructions required
to implement the software design.

Code Review: Conduct reviews of the code to ensure that it conforms to the coding
standards, that the design has been followed, the architectural guidelines are adhered to, and
that no defects have been introduced.

My preference is to record the review comments in the code itself. Let the version control
system maintain the archival copy once the comments have been addressed. Also record who
by and when the review was done in the file header section.

This task uses the following deliverables:

Class Design: Stub versions of the methods for each class containing a description
of what the method is supposed to achieve.

Source Code: A file containg the text form of the computer instructions required
to implement the software design.

Test Harness: Software designed to exercise another piece of software.

The test harness should put the software under test through each applicable
use case and document the results of the test.

Use Case Design: A document containing sequence or collaboration diagrams
that describes how the classes in the system will interact for each use case.

89

1.4 Methodology 1 CONCEPTUAL MODEL

This task produces the following deliverables:

Review: A document that describes what was reviewed, who did the review, when,
and what was done with respect to each comment that was made by the
reviewers.

Documentation: Typical documentation includes on-line help (including tool-tips), user
manuals, and installation guides. You may also need to provide administration guides if the
system is complex.

The design documentation and programmer’s guides should also be included in the doc-
ument set if the system is to be able to be extended by others.

The project documentation should be kept for reference by the maintenance team.

This task uses the following deliverables:

Architecture: A document describing the proposed design of the system at a high
level. It will generally have section describing the system at a conceptual view,
a logical view, and a pgysical view.

The architecture document may be divided into multiple documents for dif-
ferent audiences or viewpoints.

Use Case Description: A description of the interactions between a system and
its users.

Use Case Design: A document containing sequence or collaboration diagrams
that describes how the classes in the system will interact for each use case.

User Interface Design: A document showing the layout of each screen of the
proposed system, and the navigation paths between those screens.

The design might also include a prototypical version of the screens to enable
a demonstration of some of the more important use cases.

This task produces the following deliverables:

Administration Guide: A document describing how the system should be main-
tained. Some systems will required periodic actions by the administrator,
such as the clearing out of old data files.

Installation Guide: A document giving the administrator of the system instruc-
tions on how to install the system. This should also include instructions for
removing the system or for reverting back to a previous version.

Online Help: Help text that describes what the various features of the system
are.
More useful help text can guide the user through the tasks that the software
is designed to do.

Programming Guide: A document that describes how the various libraries and
other components are supposed to be used.

For systems that have their own application specific languages a programming
guide should be provided so that new scripts can be created.

90

1 CONCEPTUAL MODEL 1.4 Methodology

Tool Tips: Short pop-up messages that appear when a mouse is hovered over
a user interface widget. These should provide some guidance on what the
widget is normally used for.

Tutorials: A document that guides the user through typical tasks that the soft-
ware is designed to do.

User Manual: A document describing what the features of the system are and
how the system can best be used to perform its functions.

Documentation Review: Conduct reviews of documentation to ensure that the wording
is clear and helpful, that there are no errors and that it conforms to the documentation
statndards for the project.

This task uses the following deliverables:

Administration Guide: A document describing how the system should be main-
tained. Some systems will required periodic actions by the administrator,
such as the clearing out of old data files.

Installation Guide: A document giving the administrator of the system instruc-
tions on how to install the system. This should also include instructions for
removing the system or for reverting back to a previous version.

Online Help: Help text that describes what the various features of the system
are.
More useful help text can guide the user through the tasks that the software
is designed to do.

Programming Guide: A document that describes how the various libraries and
other components are supposed to be used.
For systems that have their own application specific languages a programming

guide should be provided so that new scripts can be created.

Tool Tips: Short pop-up messages that appear when a mouse is hovered over
a user interface widget. These should provide some guidance on what the
widget is normally used for.

Tutorials: A document that guides the user through typical tasks that the soft-
ware is designed to do.

User Manual: A document describing what the features of the system are and
how the system can best be used to perform its functions.
This task produces the following deliverables:

Review: A document that describes what was reviewed, who did the review, when,
and what was done with respect to each comment that was made by the
reviewers.

Use Case Test: We need to be able to demonstrate that the classes have been built
correctly.

91

1.4 Methodology 1 CONCEPTUAL MODEL

This task uses the following deliverables:

Data Sets: Data that is required to control the programs of the system.

This includes configuration data and reference data that is required to make
the system operational.

Executable Program: Instructions for a computer in its native format.

Libraries: Executable instructions for a computer that are loaded with a program
to provide additional functionality.

Scripts: Instructions for a computer written in the language of some interpreter.

This task produces the following deliverables:

Test Report: A document describing what tests were undertaken and what the
results were.

Interface and Application Integration: The aim is join the separately developed com-
ponents into a single unified system.

Combine the application and user interface classes.

Create shell scripts to mediate between executables and set their environments and pa-
rameters. Retest the scenarios using the UI as a driver instead of the test cases. Use the test
plan as a guide to walk through the user transactions that establish the test pre-conditions,
then test the scenarios.

This task uses the following deliverables:

Executable Program: Instructions for a computer in its native format.

Libraries: Executable instructions for a computer that are loaded with a program
to provide additional functionality.

Scripts: Instructions for a computer written in the language of some interpreter.

This task produces the following deliverables:

Build Scripts: The scripts used to convert the source code into libraries and
executable programs.

Scripts: Instructions for a computer written in the language of some interpreter.

Generalisation: The aim is to improve the design using a bit of hindsight.

Examine the class design in the light of implementation to find improved structures.
Review future increments to find potentially reusable classes and separate out the reusable
parts into new abstract classes. Look for standard design patterns.

It is possible to spend too much time in this phase, finessing the code without making
significant improvements. It is possible to over do the generalization, making the code harder
to understand.

92

1 CONCEPTUAL MODEL 1.4 Methodology

This task uses the following deliverables:

Source Code: A file containg the text form of the computer instructions required
to implement the software design.

This task produces the following deliverables:

Class Design: Stub versions of the methods for each class containing a description
of what the method is supposed to achieve.

Source Code: A file containg the text form of the computer instructions required
to implement the software design.

System Integration Testing: Many systems need to interface to other systems. These
interfaces need to be tested. This testing requires a different approach as it usually involves
other organisations.

Liase with the the system administrators of the other systems to organise the test. Develop
the procedures necessary for the systems to interconnect. Put the remote systems into test
mode and pass test data across the connections. Use the test harness logging to verify that
the systems communicate correctly.

This task uses the following deliverables:

Data Sets: Data that is required to control the programs of the system.

This includes configuration data and reference data that is required to make
the system operational.

Executable Program: Instructions for a computer in its native format.
Scripts: Instructions for a computer written in the language of some interpreter.

Test Report: A document describing what tests were undertaken and what the
results were.

This task produces the following deliverables:

Defect Report: A document or database entry describing some defect in the
system. Such defects should include a description of the problem, how to
reproduce the problem, and the severity and the importance of the problem.

Libraries: Executable instructions for a computer that are loaded with a program
to provide additional functionality.

Packaging: Once construction has finished, the system has to be packaged so that it can
be easily installed on the clients machines.

The build script will include a mode that builds the delivery package. Once built and
tested, the files are copied onto the distribution media. Include a script that will install the
package onto the clients system, possibly replacing the previous version, and upgrading the
clients data files as necessary. The data upgrade should be non-destructive so that the client
can back out the upgrade if they so wish.

93

1.4 Methodology 1 CONCEPTUAL MODEL

This task uses the following deliverables:

Administration Guide: A document describing how the system should be main-
tained. Some systems will required periodic actions by the administrator,
such as the clearing out of old data files.

Build Scripts: The scripts used to convert the source code into libraries and
executable programs.

Data Sets: Data that is required to control the programs of the system.

This includes configuration data and reference data that is required to make
the system operational.

Executable Program: Instructions for a computer in its native format.

Libraries: Executable instructions for a computer that are loaded with a program
to provide additional functionality.

Scripts: Instructions for a computer written in the language of some interpreter.

This task produces the following deliverables:

Installable Package: A software package that can be readily unpacked and in-
stalled.

Installation Guide: A document giving the administrator of the system instruc-
tions on how to install the system. This should also include instructions for
removing the system or for reverting back to a previous version.

Packaging Instructions: A document, and possible some scripts, that describe
how to package the software system for distribution.

Acceptance Testing: The client needs to assure themselves that they are getting what
they paid for.

You will need to support their testing by providing an environment that allows the testing
to be performed and the results to be gathered into a useful format.

You will also need to provide some guidance on what tests to perform. While the client
should design the tests based on their requirements, it is the development team that really
understands what the product can do.

This task uses the following deliverables:

Administration Guide: A document describing how the system should be main-
tained. Some systems will required periodic actions by the administrator,
such as the clearing out of old data files.

Installable Package: A software package that can be readily unpacked and in-
stalled.

Installation Guide: A document giving the administrator of the system instruc-
tions on how to install the system. This should also include instructions for
removing the system or for reverting back to a previous version.

User Manual: A document describing what the features of the system are and
how the system can best be used to perform its functions.

94

1 CONCEPTUAL MODEL 1.4 Methodology

This task produces the following deliverables:

Defect Report: A document or database entry describing some defect in the
system. Such defects should include a description of the problem, how to
reproduce the problem, and the severity and the importance of the problem.

Test Report: A document describing what tests were undertaken and what the
results were.

Post Implementation Review: The aim is to identify anything that could have been
done better. A combination of one-on-one interviews and team meetings should be used
to illicit ideas for improvement of the development process and the product. The use of
blogs and wikis by the team members should also be encouraged as a means of proposing
improvements to the process.

This task produces the following deliverables:

Review: A document that describes what was reviewed, who did the review, when,
and what was done with respect to each comment that was made by the
reviewers.

2 LOGICAL MODEL

2 Logical Model

A logical architecture has a focus on design of component interactions, connection mecha-
nisms and protocols, interface design and specification, and providing contextual information
for component users

2.1 Implementation Modules

The implementation modules are the software components that are used to construct the
system. These may be executable programs, libraries, or databases, for example.

2.1.1 Fedora Linux

A version of the open source UNIX like operating system. Fedora is a Linux-based op-
erating system. The Fedora Project is the name of a worldwide community of people who
love, use, and build free software from around the globe who want to lead in the creation and
spread of free code and content by working together as a community. Fedora is sponsored by
Red Hat, the world’s most trusted provider of open source technology. Red Hat invests in
Fedora to encourage collaboration and incubate innovative new free software technologies.

This component has the following responsibilities:

Installing Fedora Linux: This component is responsible for providing a copy of
Fedora Linux that is suitable configured and has the correct software.

Limiting File Access: Only authorised users will be able to access files.

Java
v, | [oe | | vt | [foe=] [Ta]| [
Machine

iscalled by \is called by iscalledby/:calledby is called by

Fedora
Linux

Figure 37: Fedora Linux

2.1.2 ICE

The Internet Communication Environment is a CORBA like component that provides
network and language abstraction.

The Internet Communications Engine (Ice) is a modern object-oriented middleware with
support for C++, .NET, Java, Python, Objective-C, Ruby, and PHP. Ice is used in many
mission-critical projects by companies all over the world.

Ice is easy to learn, yet provides a powerful network infrastructure and vast array of
features for demanding technical applications.

Ice is free software, available with full source, and released under the terms of GNU
General Public License (GPL). Commercial licenses are available for customers who wish to
use Ice for closed-source software.

96

2 LOGICAL MODEL 2.1 Implementation Modules

This component has the following responsibilities:

Remote Procedure Calls: An ability to make a call to a procedure hosted in
another process, possibly on another machine.

ICE
'
iscalled by ispart of
Fedora ! ICE
Linux ispart of Client
/: linked via socket to
ICE
Server

Figure 38: ICE

2.1.3 Subversion

A component that provides version control of text files.

Subversion exists to be universally recognized and adopted as an open-source, centralized
version control system characterized by its reliability as a safe haven for valuable data; the
simplicity of its model and usage; and its ability to support the needs of a wide variety of
users and projects, from individuals to large-scale enterprise operations.

This component has the following responsibilities:

Provide Version Control: Responsible for providing version control.

Configuration
Manager
A

slinked via pipe to

Subversion

Figure 39: Subversion

2.1.4 Architecture Ontology

An ontology of software architecture terms. This is the reference architecture that forms
the core of SASSY.

This component has the following responsibilities:

Architectural Data: This ontology is responsible for the architectural data for
the system under development.

97

2.1 Implementation Modules 2 LOGICAL MODEL

Protege

Kscalledby

OWLAPI sused by

isused by,

Architecture
Ontology

Figure 40: Architecture Ontology

2.1.5 Development Ontology
An ontology of software development terms. This ontology is all about the development
process. The project ontology will import this one and add tasks and team members.

This component has the following responsibilities:

The Development Methodology: Responsible for defining the set of tasks and
their relationships to be undertaken for the project.

The Increment Plan: Resposible for specifying the work to be done during each
increment of the development.

Protege

ﬁ;caued by

OWLAPI sused by

kused by,

Development
Ontology

Figure 41: Development Ontology

2.1.6 Dictionary Ontology

A project specific ontology that captures the terms used on the project that have project
specific meanings.

This component has the following responsibilities:

Build Data Dictionary Ontology: Construction of a dictionary or glosary of
terms used by the project.

98

2 LOGICAL MODEL 2.1 Implementation Modules

Protege

Kscalledby

OWLAPI sused by

%used by,

Dictionary
Ontology

Figure 42: Dictionary Ontology

2.1.7 Quality Attribute Ontology

A reference ontology containing all known quality attributes. This is used when developing
the requirements for a project.

This component has the following responsibilities:

Build Quality Attribute Ontology: Construction of an ontology of known qual-
ity attributes and the various quality models proposed in the literature.

Protege

K;cauedby

OWLAPI sused by

Ksused by

Quality
Attribute
Ontology

Figure 43: Quality Attribute Ontology

2.1.8 Requirements Ontology

This is a project specific ontology that captures the requirements for that project.
This component has the following responsibilities:

Build Requirement Ontology: Construction of an ontology of the requirements
for the project.

2.1.9 SASSY Ontology

This is the ontology that captures the project specific aspects of SASSY’s architecture.

99

2.1 Implementation Modules 2 LOGICAL MODEL

Protege

Kscalledby

OWLAPI sused by

isused by,

Requirements
Ontology

Figure 44: Requirements Ontology

This component has the following responsibilities:

Build Architecture Ontology: Construction of an ontology of architectural in-
formation.

Protege

Kscailed by

OWLAPI sused by

is used by,

SASSY
Ontology

Figure 45: SASSY Ontology

2.1.10 Tactics Ontology

This is a reference ontology that is used to map the project’s requirements to the respon-
sibilities of its components.

This component has the following responsibilities:

Build Tactics Ontology: Construct an ontology of well known software develop-
ment tactics. Include references to the quality attributes that they address.

2.1.11 ICE Server

Provides a CORBA like interface to Java libraries allowing access from C++ programs,
potentially on other machines.

This component has the following responsibilities:

Interfacing to OWL Data: Responsible for collecting the data from the database
in a form suitable for the document modelling.

100

2 LOGICAL MODEL 2.1 Implementation Modules

Protege

Kscalledby

OWLAPI sused by

%used by,

Tactics
Ontology

Figure 46: Tactics Ontology

ICE
/i:part of
ICE ’ .
Client ispart of icedowl
islinked via socket to ispart of ~“islinked with
ICE

Server isused by \ ispart of jslinked with

%usedby iscalled by

Java

Virtua OWLAPI
Machine

Figure 47: ICE Server

2.1.12 OWLAPI

A Java component which provides a programming interface for OWL ontologies.
The OWL API is a Java API and reference implmentation for creating, manipulating and
serialising OWL Ontologies. The latest version of the API is focused towards OWL 2

This component has the following responsibilities:
Interfacing to OWL Data: Responsible for collecting the data from the database
in a form suitable for the document modelling.
2.1.13 ICE Client

Provides a CORBA like connection to an ICE server allowing access from C++ to libraries
written in other languages and potentially hosted on other machines.

This component has the following responsibilities:

Interfacing to OWL Data: Responsible for collecting the data from the database
in a form suitable for the document modelling.

101

2 LOGICAL MODEL

R Server
‘ :

isused by

2.1 Implementation Modules

ispart of Jslinked with

isused by isused by / isused by

Tactics
Ontology

Development /SE’?‘blsr)l/e Dictionary Requirements
Ontology Ontology Ontology Ontology

SASSY
Ontology

Architecture
Ontology

Figure 48: OWLAPI

SASSY SASSY
ICE owl-view Diagram Document
Modeller Modeller
ispart of Qcalled%ichled by
ICE

is part of Client

4
%‘Iinked viasocket to

Figure 49: ICE Client

ICE
Server

2.1.14 Log Stream
Provides a C++ stream style interface for logging events within application and server

programs. It passes the log messages to a logging server.

This component has the following responsibilities:

Logging Events: Saving the log messages to persistent storage.

2.1.15 SASSY Diagram Modeller
Navigates the ontologies to create the internal representation of the diagrams.

This component has the following responsibilities:
Diagram Modelling: Builds an internal representation of a diagram from data

extracted from the ontology.

2.1.16 SASSY Document Formatter
Converts the internal representation of the document, and any diagrams, into a format

according to the output language (eg LaTeX).

102

2.1 Implementation Modules

2 LOGICAL MODEL

SASSY
GUI

slinked via pipeto

islinked viapipe to

saDocGen iscalled by

-
Configuration Process Software
Manager Manager Manager

is built with

iscalled by \iscaledby /islinked with /is called by

Log
Stream

is linked via socket to

sal_ogger

Figure 50: Log Stream

ICE
Client

isbuilt with\is linked with

iscaled by | saDocGen

islinked wiy‘span of Jshbuilt with

SASSY
Diagram
Modeller

islinked viapipeto

GraphViz

Figure 51: SASSY Diagram Modeller

This component has the following responsibilities:
Formatting the Document: This module is responsible for converting the in-

ternal representation of the document into its final format.

saDocGen
[

ispart of fislinked with Yis built with

SASSY

Document

Formatter

islinked viapipet‘chlinked viapipeto

latex dvipdfm

Figure 52: SASSY Document Formatter

103

2.1 Implementation Modules 2 LOGICAL MODEL

2.1.17 SASSY Document Modeller

Navigates the ontologies to create an internal representation of the document.

This component has the following responsibilities:

Architecture Document Modelling: Build an internal representation of the ar-
chitecture document based on the contents of the ontologies.

Document Modelling: Build a representation of the document based on the con-
tents of the ontologies.

SASSY
Document
Modeller

isbuilt Withﬁ part of jis linked with

saDocGen

islinked with \\is built with

ICE
Client

Figure 53: SASSY Document Modeller

2.1.18 Configuration Manager
Manages the configuration data for SASSY.

This component has the following responsibilities:

Managing the Configuration: This module is responsible for managing the con-
figuration data for the system.

SASSY

GUI
‘yi nked viapipeto

o] ; Configuration ;
islinked with iscalled by Manager iscalled by
isused wfslinked vi:WIed by
: Log
Qt Subversion Stream

Figure 54: Configuration Manager

2.1.19 Firefox
An HTML web browser.

104

2 LOGICAL MODEL 2.1 Implementation Modules

This component has the following responsibilities:

Displaying HTML Documents: Render a HTML document.

SASSY
GUI

K:ussdby

Protege is used by

Eusad by,

Firefox

Figure 55: Firefox

2.1.20 GraphViz

A package containing programs that can do diagram layouts.

This component has the following responsibilities:

Diagram Layout: Organises the objects of the diagram by determining their po-
sitions and the routes for the interconnections.

SASSY
Protege owl-view Diagram
Modeller

islinked viapipeto|islinked viapipeto /islinked via pipe to

GraphViz

Figure 56: GraphViz

2.1.21 Java Virtual Machine

Executes Java byte code.

This component has the following responsibilities:

Executing Java Classes: Java programs are compiled into java class files which
then need t be interpreted for the underlying machine.

2.1.22 latex

A component that converts a text file into well laid out and formatted documents.

105

2.1 Implementation Modules 2 LOGICAL MODEL

icedowl

iinnkthispartof

ICE .
Sarver Protege isused by

‘&ssdby sused by

Java
Virtual
Machine

scalled by

Fedora
Linux

Figure 57: Java Virtual Machine

This component has the following responsibilities:

Converting LaTeX to DVI: The LaTeX file is typeset into a device independent
format.

SASSY
Document
Formatter

A

slinked viapipeto

latex

Figure 58: latex

2.1.23 Process Manager
Responsible for starting, stopping and monitoring the SASSY processes.

This component has the following responsibilities:

Launching Processes: Start any processes that the SASSY system needs to have
running.

Monitoring Processes: Ensure that all required background processes are run-
ning, and restart them if necessary.

Stopping Processes: Terminate the background processes when they are no longer
required.

2.1.24 Protege

A program for entering and organising ontologies.

106

2 LOGICAL MODEL 2.1 Implementation Modules

Process
Manager

(scdled bxiscalled by

Fedora Log
Linux Stream

Figure 59: Process Manager

This component has the following responsibilities:

Entering the Model: This module is responsible for allowing the user to enter
the model.

Organising Data:

isused by

=

susedby

islinked viapipeto

GraphViz

Quality
Attribute
Ontology

Architecture

’ Dictionary rchit
ntology

Ontology

Development
Ontology

Figure 60: Protege

2.1.25 Software Manager

Responsible for ensuring the required software is installed and running.

This component has the following responsibilities:

Checking Required Software: Checks are made to determine if the software
required by the system is installed and reports discrepencies.

Installing Required Software: Responsible for installing all the software that
the project depends upon.

2.1.26 dvipdfm

A program for converting DVI into PDF. It correctly handles hyper links.

This component has the following responsibilities:

Converting DVI to PDF: DVI files are rendered to PDF.

107

2.1 Implementation Modules 2 LOGICAL MODEL

Software
Manager

iscalled b)\iscalled by

Fedora Log
Linux Stream

Figure 61: Software Manager

SASSY
Document
Formatter

slinked viapipeto

dvipdfm

Figure 62: dvipdfm

2.1.27 evince

A program for displaying PDF files.

This component has the following responsibilities:

View Documents: Responsible for allowing the user to view the generated doc-
uments.

SASSY
GUI

is used by
evince

Figure 63: evince

2.1.28 icedowl

Server program to retrieve OWL data.

This component has the following responsibilities:

Interfacing to OWL Data: Responsible for collecting the data from the database
in a form suitable for the document modelling.

2.1.29 owl-view

Enables a user to view all relationships, classes and individuals in an ontology.

108

2 LOGICAL MODEL 2.1 Implementation Modules

is part of fislinked with

isusedby | o islinked with Jis part of
ﬁse'dby iscalled by

Java

Virtua OWLAPI

Machine

Figure 64: icedowl

This component has the following responsibilities:

Visualizing the Model: This module is responsible for displaying the model to

the user.
ICE SASSY
Client GUI
isbuiltwi%cdledby isused by
owl-view islinked with Jis called by
islinked via pipe to iinnkmsadby
GraphViz Qt

Figure 65: owl-view

2.1.30 saDocGen

Responsible for coordinating the generation of a document according to the incoming
commands. It uses the modeller and formatter components to perform the tasks.

This component has the following responsibilities:

Generating Documents: Responsible for coordinating the process of generating
the document.

2.1.31 SASSY GUI

Responsible for collecting the user’s input and passing the resultant data to the document
generator component.

This component has the following responsibilities:

The User Interface: This component is responsible for allowing the user to easily
interact with the application. It should provide enough information to allow
the user to select the appropriate actions.

109

2.1 Implementation Modules 2 LOGICAL MODEL

SASSY SASSY SASSY
Diagram Document Document Sgile
Formatter Modeller
ispart of \isbuilt with \islinked with \is part of isbuilt with /ispart of)islinked with islinked via pipeto
} saDocGen iscalled by

islinked with "\ is called by)is built with

Log
Stream

Figure 66: saDocGen

View Selection: Allow the user to select which views to include in the architec-
ture document.

wked viapipeto \\isused by “\islinked viapipeto

iscaled by

isused by (islinked with

innked with
Kl

Figure 67: SASSY GUI

2.1.32 saLogger

Writes log events to disk.

This component has the following responsibilities:

Logging Events: Saving the log messages to persistent storage.

Log
Stream

is linked via socket to

salogger

Figure 68: sal.ogger

2.1.33 Data Manager

Responsible for detecting changes to ontologies and notifying anything that registered its
need to know.

110

2 LOGICAL MODEL 2.1 Implementation Modules

Data
Manager

is called by

Fedora
Linux

Figure 69: Data Manager

This component has the following responsibilities:

2.1.34 Qt

A library providing platform and user interface abstraction.

This component has the following responsibilities:

The User Interface: This component is responsible for allowing the user to easily
interact with the application. It should provide enough information to allow
the user to select the appropriate actions.

SASSY
GUI

iinnkedviapipeto/:used by

Configuration

Manager owl-view islinked with Jscalled by

A
isused by \islinked with jsused by

Qt

scalled by

Fedora
Linux

Figure 70: Qt

111

2.2 Interface 2 LOGICAL MODEL

2.2 Interface

A logical channel used to pass data and control instructions between components of a
computer system.

2.2.1 External Interface

An interface which communicates to external systems. These form the boundary of the
project and are key interfaces for the architecture of the system.

IF62 SASSY User Interface: The user interface that allows the operation of the system.

Graphical User Input: Accept user interactions with a graphical representation
of the application. See SASSY GUI.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a Pointer.

IF62 -
SASSY is connected to Grapsrzrcal isaport for [SASSY
User Inout 1 cul

Interface p

Figure 71: IF62 SASSY User Interface

IF63 Document Output: The generated document is made available for viewing.

Document Rendering: Convert the document to a form that can be read by a
person. See evince.

Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a Pointer.

. IF63
evince has port B&cgg% is connected to Document
Output

Figure 72: IF63 Document Output

IF64 Protege User Interface: A user interface that accepts the input of an ontology.

Protege User Input: Accept user input for Protege. See Protege.
Transport Medium: Displayed in a window.

Protocol: Event driven with Windows, Icons, Menus and a Pointer.

112

2 LOGICAL MODEL 2.2 Interface

IF64
. Protege -
PrLjJthge is connected to User isaport for »| Protege
Interface Input

Figure 73: IF64 Protege User Interface

2.2.2 System Interface

An interface between two systems within the project. These are key interfaces in the
architecture of the system.

2.2.3 Component Interface

An interface between two of the project’s components.

IF32 OwlView OWL: Requests for data from the owl database.

ICE Client API: Wraps the ICE interface and makes the OWL data available
through a simple API. See ICE Client.

Owl View Owl Interface: Requests for data from the owl database. See owl-
view.

Protocol: C++ Function Call

has port Vievlv is connected to IF32 is connected to ICE isaport for ICE
owl-view port » OwlView » Client po ;
Oowl OWL APl Client
Interface

Figure 74: IF32 OwlView OWL

IF33 Diagram Modeller OWL: Requests for data from the owl database.

Diagram Modeller Owl Interface: Requests for data from the owl database.
See SASSY Diagram Modeller.

ICE Client API: Wraps the ICE interface and makes the OWL data available
through a simple API. See ICE Client.

Protocol: C++ Function Call

IF33

SASSY Diagram

f hasport _ | Modeller isconnectedto _ | Diagram is connected to ICE isaport for ICE
Diagrar > owl > Modell Client cli
Modeller o APl fent

Interface OowL

Figure 75: IF33 Diagram Modeller OWL

113

2.2 Interface 2 LOGICAL MODEL

IF34 Document Modeller OWL: Requests for data from the owl database.

Document Modeller Owl Interface: Requests for data from the owl database.
See SASSY Document Modeller.

ICE Client API: Wraps the ICE interface and makes the OWL data available
through a simple API. See ICE Client.

Protocol: C++ Function Call

SASSY Document IF34 ICE
hasport _| Modeller isconnectedto | Document is connected to ; isaport for ICE
Document > owl > Modell Client i
Modeller odeler APl ient
Interface OowL

Figure 76: IF34 Document Modeller OWL

IF35 Data Manager Log: Messages concerning error or status of the data manager.

Data Manager Log Interface: Sends log messages. See Data Manager.

Logging API: An API that allows applications to send log messages. See Log
Stream.

Protocol: C++ Function Call

Data: Log message containing time stamp, process identifier, severity and details
of the event.

Data IF35
Data has port Manager is connected to Data isconnectedto | Logging | isaport for Log
Manager Log Manager 71 AP Stream
Interface Log

Figure 77: IF35 Data Manager Log

IF36 Configuration Manager Log: Messages concerning errors or status of the config-
uration manager.

Configuration Manager Log Interface: Sends log messages. See Configura-
tion Manager.

Logging API: An API that allows applications to send log messages. See Log
Stream.

Protocol: C++ Function Call

Data: Log message containing time stamp, process identifier, severity and details
of the event.

114

2 LOGICAL MODEL 2.2 Interface

Configuration IF36
Configuration | has port Manager isconnectedto | Configuration | isconnectedto _| Logging | isaport for Log
Manager Log Manager Tl AP Stream
Interface Log

Figure 78: IF36 Configuration Manager Log

IF37 ICE Client Log: Messages concerning errors or the status of the ICE client.
ICE Client Log Interface: Sends log messages. See ICE Client.

Logging API: An API that allows applications to send log messages. See Log
Stream.

Protocol: C++ Function Call

Data: Log message containing time stamp, process identifier, severity and details
of the event.

ICE IF37
ICE has port Client is connected to ICE is connected to Logging isaport for Log
Client Log Client API Stream
Interface Log

Figure 79: IF37 ICE Client Log

IF38 ICE Server Log: Messages containing errors or the status of the ICE server.
ICE Server Log Interface: Sends log messages. See ICE Server.

Logging API: An API that allows applications to send log messages. See Log
Stream.

Protocol: Java Function Call

Data: Log message containing time stamp, process identifier, severity and details
of the event.

ICE IF38
ICE has port Server is connected to ICE is connected to Logging isaport for Log
Server Log Server AP Stream
Interface Log

Figure 80: IF38 ICE Server Log

IF39 OwlView Log: Messages containing errors or the status of the owl view program.

Logging API: An API that allows applications to send log messages. See Log
Stream.

Owl View Log Interface: Sends log messages. See owl-view.
Protocol: C++ Function Call

Data: Log message containing time stamp, process identifier, severity and details
of the event.

115

2.2 Interface 2 LOGICAL MODEL

Oowl
f : IF39 ! - :
i has port View isconnectedto _ | : is connected to Logging | isaportfor .| Log
owl-view Log » OWL|VIEW AP > o
Interface %9

Figure 81: IF39 OwlView Log

IF40 Process Manager Log: Messages containing errors or the status of the process
manager.

Logging API: An API that allows applications to send log messages. See Log
Stream.

Process Manager Log Interface: Sends log messages. See Process Manager.
Protocol: C++ Function Call

Data: Log message containing time stamp, process identifier, severity and details
of the event.

Process IF40
Process has port Manager is connected to Process isconnectedto | Logging | isaport for Log
Manager Log Manager 71 AP Stream
Interface Log

Figure 82: IF40 Process Manager Log

IF41 Software Manager Log: Messages containing errors or the status of the software
manager.

Logging API: An API that allows applications to send log messages. See Log
Stream.

Software Manager Log Interface: Sends log messages. See Software Manager.
Protocol: C++ Function Call

Data: Log message containing time stamp, process identifier, severity and details
of the event.

Software IF41
Software | has port Manager is connected to Software | isconnectedto | Logging | isaport for Log
Manager Log Manager 71 AP Stream
Interface Log

Figure 83: IF41 Software Manager Log

116

2 LOGICAL MODEL 2.2 Interface

IF42 Diagram Modeller Log: Messages containing errors or the status of the diagram
modeller.

Logging API: An API that allows applications to send log messages. See Log
Stream.

Diagram Modeller Log Interface: Sends log messages. See SASSY Diagram
Modeller.

Protocol: C++ Function Call

Data: Log message containing time stamp, process identifier, severity and details
of the event.

SASSY Diagram IF42

Diagram hasport | Modeller | isconnected to Diagram isconnectedto | Logging | isaport for Log

Modeller Log Modeller API Stream
Interface Log

Figure 84: IF42 Diagram Modeller Log

IF43 Document Modeller Log: Messages containing errors or the status of the document
modeller.

Logging API: An API that allows applications to send log messages. See Log
Stream.

Document Modeller Log Interface: Sends log messages. See SASSY Docu-
ment Modeller.

Protocol: C++ Function Call

Data: Log message containing time stamp, process identifier, severity and details
of the event.

SASSY Document | IF43) i _
Document |—hesport Modeller isconnectedto | Document | isconnectedto | Logging | isaport for Log
Modeller Log Modeller APl Stream
Interface Log

Figure 85: IF43 Document Modeller Log

IF44 Document Generator Log: Messages containing errors or the status of the docu-
ment generator.

Logging API: An API that allows applications to send log messages. See Log
Stream.

Document Generator Log Interface: Sends log messages. See saDocGen.
Protocol: C++ Function Call

Data: Log message containing time stamp, process identifier, severity and details
of the event.

117

2.2 Interface 2 LOGICAL MODEL

Document IF44
saDocGen has port Generator isconnected to | Document isconnectedto | Logging | isaport for Log
Log Generator 71 AP Stream
Interface Log

Figure 86: IF44 Document Generator Log

IF45 GUI Log: Messages containing errors or the status of the user interface program.

Logging API: An API that allows applications to send log messages. See Log
Stream.

GUI Log Interface: Sends log messages. See SASSY GUIL
Protocol: C++ Function Call

Data: Log message containing time stamp, process identifier, severity and details
of the event.

SASSY hasport _| f&; is connected to l(l;:é? is connected to Logging isaport for Log
GUI Interface Log API Stream

Figure 87: IF45 GUI Log

IF48 Log Message: A log message containing a time stamp, the source of the message,
the severity of the message and the text of the message.

Logging Interface: Sends log messages. See Log Stream.
saLogger Interface: Accept messages to be logged. See sal.ogger.

Transport Medium: Data is transferred over a socket connection using the In-
ternet Protocol.

Data: Log message containing time stamp, process identifier, severity and details
of the event.

Protocol: UDP/IP

Log hasport | Logging isconnectedto _ | If48 is connected to sal_ogger isaport for | sal oager
Stream ~| Interface o M %9 e Interface o 99

Figure 88: 1F48 Log Message

IF56 GUI to Configuration Manager: A command message to the configuration man-
ager.

Configuration Manager Standard Input: Interprets the commands from the
GUI. See Configuration Manager.

GUI CM Output: Writes command messages. See SASSY GUIL.
Protocol: Unix Pipe

118

2 LOGICAL MODEL 2.2 Interface

Gul I(';S? Configuration
SASSY hasport _| cM isconnectedto to is connected to Manager isaport for Configuration
cul Output Configuration Stl'?dlir d Manager
Manager P

Figure 89: IF56 GUI to Configuration Manager

IF57 Configuration Manager to GUI: The output of the configuration manager in
response to a command request.

Configuration Manager Standard Output: Writes response messages. See Con-
figuration Manager.

GUI Configuration Manager Input: Accepts messages from the configuration
manager. See SASSY GUL

Protocol: Unix Pipe

Configuration C oaniF3r7ati on GUI
Configuration | has port Manager is connected to M a% or isconnectedto | Configuration | isaportfor | SASSY
Manager Standard t g\g Manager 7l GuUI
Output Gul Input

Figure 90: IF57 Configuration Manager to GUI

2.2.4 Product Interface

An interface involving a third party product. Such interfaces are constrained by the prod-
uct.

IF01 File Event Notification: A request for notification that an ontology or configuration
file has changed its state.

Data Manager File Interface: Requests notification of file events. See Data
Manager.

Linux File API: POSIX file handling functions. See Fedora Linux.

Protocol: C Function Call

Data IFO1 Linax
Data has port Manager is connected to File is connected to File isaport for Fedora
Manager File Event APl Linux
Interface Notification

Figure 91: IFO01 File Event Notification

119

2.2 Interface 2 LOGICAL MODEL

IF02 Networking: Requests to send and receive data over a socket connections. This
interface is between two third party products and is therefore not part of the project devel-
opment.

ICE Network Interface: Requests for access to sockets. See ICE.
Linux Network API: Socket functions for TCP and UDP. See Fedora Linux.

Protocol: C Function Call

ICE : ; Linux ’
ICE has port Network is connected to > Na\llsc?ri . is connected to »! Network isaport for FL??ﬁxa
Interface 9 API

Figure 92: TF02 Networking

IF03 Java File Handling: Requsts by the JVM to read from or write to a file. This
interface is between two third party products and is therefore not part of the project devel-
opment.

JVM File Interface: Access to the file system. See Java Virtual Machine.
Linux File API: POSIX file handling functions. See Fedora Linux.

Protocol: C Function Call

IFO3 -

VJi?;IuZ\I has port J;{I'\él isconnectedto | Java is connected to LI':ﬂléx isaport for | Fedora

. 1 File Linux
Machine Interface Handiing AP

Figure 93: IF03 Java File Handling

IF04 Java Networking: Requests to send or receive data over a socket connection. This
interface is between two third party products and is therefore not part of the project devel-
opment.

JVM Network Interface: Access to the networking subsystem. See Java Virtual
Machine.

Linux Network API: Socket functions for TCP and UDP. See Fedora Linux.

Protocol: C Function Call

Java VM : IFO4 ; Linux !
Virtual has port Network is connected to Java is connected to »| Network isaport for FL?cri]cL)J;a
Machine Interface Networking API

Figure 94: IF04 Java Networking

120

2 LOGICAL MODEL 2.2 Interface

IF05 Java Graphics: Requests to display graphics primitives on the display device. This
interface is between two third party products and is therefore not part of the project devel-
opment.

JVM Graphics Interface: Access to the graphics subsystem. See Java Virtual
Machine.

Linux Graphics API: X Window system interface. See Fedora Linux.

Protocol: C Function Call

Java VM . IF05 ! Linux N
Virtual has port »| Graphics is connected to Java is connected to Graphics isaport for FL?r:Ig(a
Machine Interface Graphics API

Figure 95: IF05 Java Graphics

IF06 Java IO: Requests to pass data over stadin and stdout. This interface is between
two third party products and is therefore not part of the project development.

JVM Pipe Interface: Access to the pipe subsystem. See Java Virtual Machine.

Linux IO API: Standard in and out for applications is connected to terminals
sessions and keyboards. See Fedora Linux.

Protocol: C Function Call

Java VM . IFO6 . Linux .
Virtual has port »| Pipe is connected to o Jva is connected to » 10 isaport for liﬁﬂ;a
Machine Interface 10 API

Figure 96: IF06 Java 10

IF07 Process Events: Notification that some process has changed its state.

Linux Process Management API: Signal functions for detecting process ter-
mination. See Fedora Linux.

Process Manager Process Interface: Request to be notified of a process event.
See Process Manager.

Protocol: C Function Call

Process IFO7 Linux
Process has port Manager is connected to Process is connected to Process isaport for Fedora
Manager Process Events Management Linux
Interface API

Figure 97: IF07 Process Events

121

2.2 Interface 2 LOGICAL MODEL

IF08 Qt Graphics: Requests to display graphics primitives on the display device. This
interface is between two third party products and is therefore not part of the project devel-
opment.

Linux Graphics API: X Window system interface. See Fedora Linux.

Qt Graphics Interface: Access to the X Window System for displaying widgets.
See Qt.

Protocol: C Function Call

. IFO8 : Linux :
has port QU isconnectedto _ | is connected to : isaport for Fedora
Qt I?lrtgr)goc: i Graphics GerFq' & Linux

Figure 98: IF08 Qt Graphics

IF09 Qt IO: User interface events such as mouse movement or keyboard events. This
interface is between two third party products and is therefore not part of the project devel-
opment.

Linux IO API: Standard in and out for applications is connected to terminals
sessions and keyboards. See Fedora Linux.

Qt User Event Interface: Access to the X Window system for user events. See
Qt.
Protocol: C Function Call

Qt -
at has port User is connected to ! FQ(ig is connected to Lllrgx isaport for | Fedora
Event 10 API “] Linux
Interface

Figure 99: IF09 Qt 10O

IF10 Software Manager File Handling: Requests for the status of files.
Linux File API: POSIX file handling functions. See Fedora Linux.

Software Manager File Interface: Requests for access to the file system. See
Software Manager.

Protocol: C Function Call

IF11 ICE Remote Procedure Call: A CORBA style remote procedure call.

ICE CORBA Interface: Accepts CORBA like remote procedure calls. See ICE
Server.

ICE RPC Interface: Makes a remote procedure call. See ICE Client.
Protocol: CORBA

Transport Medium: Data is transferred over a socket connection using the In-
ternet Protocol.

122

2 LOGICAL MODEL

2.2 Interface

IF10
Software : Software ! Linux ;
Software | has port Manager is connected to is connected to . isaport for Fedora
: Manager File :
Manager File File APl Linux
Interface Handling
Figure 100: IF10 Software Manager File Handling
IF11
ICE has port }IQ(S(E: is connected to R ICE is connected to CCI)%E A isaport for ICE
Client emote Server
Interface Procedure Interface
Cal

Figure 101: IF11 ICE Remote Procedure Call

IF12 Configuration Manager SVN Pipe:
command.

A message containing the output of an SVN

Configuration Manager SVN Interface: Interprets the messages from SVN.
See Configuration Manager.

SVN Standard Output: Writes responses to commands. See Subversion.

Protocol: Unix Pipe

- - IF12
Configuration . .
- - . Configuration . SVN :
Configuration | has port Manager is connected to Manager is connected to »| Standard |—S@port for Subversion
Manager SVN sv
Interface VN Output
Pipe

Figure 102: IF12 Configuration Manager SVN Pipe

IF13 Protege Architecture Read: Protege reading the architecture ontology.

Architecture Owl Reader: Read the RDF/XML from arch.owl. See Architec-
ture Ontology.

Protege Owl Reader: Read the RDF XML of an ontology. See Protege.

Protocol: File Read

IF13 -
has port Protege is connected to Protege is connected to Architecture isaport for _| Architecture
Protege owl Architecture owl Ontology
Reader Read Reader

Figure 103: IF13 Protege Architecture Read

123

2.2 Interface 2 LOGICAL MODEL

IF14 Protege Development Owl Read: Protege reading the development ontology.

Development Owl Reader: Read the RDF/XML from dev.owl. See Develop-
ment Ontology.

Protege Owl Reader: Read the RDF XML of an ontology. See Protege.

Protocol: File Read

IF14
Protege | Protege) Development ;
Protege has port > Owi is connected to Development is connected to owl isaport for Dtg\)/nelt ;%mmt
Reader Owl Reader 24
Read

Figure 104: 1F14 Protege Development Owl Read

IF15 Protege QA Read: Protege reading the quality attribute ontology.

Protege Owl Reader: Read the RDF XML of an ontology. See Protege.

QA Owl Reader: Read the RDF XML of qa.owl. See Quality Attribute Ontol-
0gy-

Protocol: File Read

IF15

Protege | . . QA . Quality
Protege has port » Owi is connected to Prgt:ge is connected to Owl isaport for Attribute
Reader Read Reader Ontology

Figure 105: IF15 Protege QA Read

IF16 Protege Dictionary Read: Protege reading the data dictionary ontology.

Dictionary Owl Reader: Read the RDF XML for dict.owl. See Dictionary On-
tology.

Protege Owl Reader: Read the RDF XML of an ontology. See Protege.

Protocol: File Read

IF16

Protege has port Pr(c))fslge is connected to Protege is connected to chgglr;ary isaport for Dictionary
Reader chF'slecgary Reader Ontology

Figure 106: IF16 Protege Dictionary Read

124

2 LOGICAL MODEL 2.2 Interface

IF17 Protege Requirements Read: Protege reading the requirements ontology.
Protege Owl Reader: Read the RDF XML of an ontology. See Protege.

Requirements Owl Reader: Read the RDF XML of req.owl. See Requirements
Ontology.

Protocol: File Read

IF17 -
Protege has port | Prg\t,age is connected to Protege is connected to Requ‘ljr\irpmts isaport for Requirements
Reader Reqtlg [ggents Reader Ontology

Figure 107: IF17 Protege Requirements Read

IF18 Protege SASSY Read: Protege reading the SASSY ontology.
Protege Owl Reader: Read the RDF XML of an ontology. See Protege.

SASSY Owl Reader: Read the RDF XML of sassy.owl. See SASSY Ontology.
Protocol: File Read

IF18 Ssy
Protege has port Prco)\lslge isconnectedto _ | Protege | isconnected to S(A)W| isaport for SASSY
€ > sassy Ontology
Reader Read Reader

Figure 108: IF18 Protege SASSY Read

IF19 Protege Tactics Read: Protege reading the tactics ontology.
Protege Owl Reader: Read the RDF XML of an ontology. See Protege.
Tactics Owl Reader: Read the RDF XML of tactics.owl. See Tactics Ontology.
Protocol: File Read

IF19 -
Protege has port H’ooﬁe is connected to Protege | _isconnected to Tg\l’lcs isaport for | Tactics
Reader Tg(:ateldcs Reader Ontology

Figure 109: IF19 Protege Tactics Read

IF20 Protege Dictionary Write: Protege writing the data dictionary ontology.

Dictionary Owl Writer: Writes RDF XML for the dict.owl. See Dictionary On-
tology.

Protege Owl Writer: Writes the RDF XML for an owl database. See Protege.
Protocol: File Write

125

2.2 Interface 2 LOGICAL MODEL

IF20 —
Protege has port Prgslge is connected to Protege is connected to chgalr?ary isaport for Dictionary
Writer D'\(/:tv'ﬁ ?gry Writer Ontology

Figure 110: IF20 Protege Dictionary Write

IF21 Protege Requirements Write: Protege writing the requirements ontology.

Protege Owl Writer: Writes the RDF XML for an owl database. See Protege.

Requirements Owl Writer: Writes the RDF XML for req.owl. See Require-
ments Ontology.

Protocol: File Write

IF21 -
Protege has port Prgtﬁe isconnected to _ | Protege isconnectedto Requ&t;rrerﬁs isaport for | Reguirements
Writer Req\t;\l/rﬁgmts Writer Ontology

Figure 111: IF21 Protege Requirements Write

IF22 Protege Sassy Write: Protege writing the SASSY ontology.

Protege Owl Writer: Writes the RDF XML for an owl database. See Protege.
SASSY Owl Writer: Writes the RDF XML for sassy.owl. See SASSY Ontology.

Protocol: File Write

IF22
has port Protege is connected to Protege is connected to SASSY isaport for SASSY
Protege Owl Sy Oowl Ontol
Writer Write Writer oy

Figure 112: IF22 Protege Sassy Write

IF23 OWLAPI Architecture Read: OWLAPI reading the architecture ontology.

Architecture Owl Reader: Read the RDF/XML from arch.owl. See Architec-
ture Ontology.

OWLAPI Owl Reader: Read the RDF XML of an ontology. See OWLAPI.

Protocol: File Read

126

2 LOGICAL MODEL 2.2 Interface

IF23

has port OWLAP is connected to OWLAPI is connected to Architectre isaport for Architecture
OWLAP owl Architecture owl Ontolo:
Reader Read Reader gy

Figure 113: IF23 OWLAPI Architecture Read

IF24

OWLAPI has port ng;v/]\ P is connected to OWLAPI is connected to Deve(|)c\),5|mem isaport for | Development
Reader Devg ggdmmt Reader Ontology

Figure 114: 1F24 OWLAPI Development Read

IF24 OWLAPI Development Read: OWLAPI reading the development ontology.

Development Owl Reader: Read the RDF/XML from dev.owl. See Develop-
ment Ontology.

OWLAPI Owl Reader: Read the RDF XML of an ontology. See OWLAPI.

Protocol: File Read

IF25 OWLAPI QA Read: OWLAPI reading the quality attribute ontology.

OWLAPI Owl Reader: Read the RDF XML of an ontology. See OWLAPI.

QA Owl Reader: Read the RDF XML of qa.owl. See Quality Attribute Ontol-
ogy.

Protocol: File Read

IF25 -
OWLAPI . ! QA . Quality
OWLAPI has port e is connected to OV\(I?LA’-\PI is connected to Owl isaport for Attribute
Reader R Reader Ontology

Figure 115: 1TF25 OWLAPI QA Read

IF26 OWLAPI Dictionary Read: OWLAPI reading the data dictionary ontology.

Dictionary Owl Reader: Read the RDF XML for dict.owl. See Dictionary On-
tology.

OWLAPI Owl Reader: Read the RDF XML of an ontology. See OWLAPI.

Protocol: File Read

127

2.2 Interface 2 LOGICAL MODEL

IF26 —
OWLAPI has port OVg)\LNAl\PI is connected to OWLAPI is connected to ch(t)levr;ary isaport for Dictionary
Reader Dlgggiary Reader Ontology

Figure 116: IF26 OWLAPI Dictionary Read

IF27 -
OWLAPI has port O\Aé\I‘N'? P is connected to OWLAPI is connected to Reqummts isaport for | Requirements
Reader Reqlg ;rgems Reader Ontology

Figure 117: IF27 OWLAPI Requirements Read

IF27 OWLAPI Requirements Read: OWLAPI reading the requirements ontology.
OWLAPI Owl Reader: Read the RDF XML of an ontology. See OWLAPI.

Requirements Owl Reader: Read the RDF XML of req.owl. See Requirements
Ontology.

Protocol: File Read

IF28 OWLAPI Sassy Read: OWLAPI reading the SASSY ontology.
OWLAPI Owl Reader: Read the RDF XML of an ontology. See OWLAPI.

SASSY Owl Reader: Read the RDF XML of sassy.owl. See SASSY Ontology.
Protocol: File Read

IF28

OWLAPI has port OVg)\LNA? P isconnectedto _ | OWLAPI is connected to SAO?VSlY isaport for SASSY
Reader SRE Reader Ontology

Figure 118: IF28 OWLAPI Sassy Read

IF29 OWLAPI Tactics Read: OWLAPI reading the tactics ontology.
OWLAPI Owl Reader: Read the RDF XML of an ontology. See OWLAPI.

Tactics Owl Reader: Read the RDF XML of tactics.owl. See Tactics Ontology.
Protocol: File Read

IF30 OWLAPI Requirements Write: OWLAPI writing the requirements ontology.
OWLAPI Owl Writer: Writes the RDF XML for an owl database. See OWLAPI.

Requirements Owl Writer: Writes the RDF XML for req.owl. See Require-
ments Ontology.

Protocol: File Write

128

2 LOGICAL MODEL 2.2 Interface

IF29 -
OWLAPI hasport OV(\Q_NAI P isconnectedto | OWLAPI isconnectedto _| Tgcvt\:lcs isaport for Tactics
Reader Tgétaldcs Reader Ontology

Figure 119: IF29 OWLAPI Tactics Read

IF30 -
has port OWLAPI is connected to OWLAPI isconnectedto Requirements isaport for | Requirements
OWLAPI owl Requirements g owl 1 Ontolo
Writer qurite Writer Y

Figure 120: IF30 OWLAPI Requirements Write

IF31 OWLAPI ICE Server: Requests for data from the owl database.

ICE Server Interface: Requests for data from the owl database. See ICE Server.

OWLAPI API: The API used by applications to access the OWL data. See
OWLAPI.

Protocol: Java Function Call

IF31
ICE . . .
ICE has port Server isconnectedto _| OWLAPI is connected to > OWLAPI isaport for » OWLAPI
Server Interface ICE API
Server

Figure 121: IF31 OWLAPI ICE Server

IF49 GraphViz Dot File: A GraphViz dot file representing a diagram.

Diagram Modeller Dot Output: Writes dot file. See SASSY Diagram Mod-
eller.

GraphViz Dot: Read the dot file specification for a diagram. See GraphViz.
Protocol: File Transfer. A file with a known path is used to transport the data.

Normally it will be written to a temporary file first and then renamed to
prevent race conditions with partially written data.

SASSY Diagram IF49

f has port Modeller isconnectedto _ | GraphViz isconnectedto | GraphViz | isaportfor _| :
Diagram Dot » Dot Dot » GraphViz
Modeller Output File

Figure 122: 1F49 GraphViz Dot File

129

2.2 Interface 2 LOGICAL MODEL

IF50 GraphViz SVG: An SVG XML file representing a diagram.

Diagram Modeller SVG Input: Read the SVG XML for a diagram. See SASSY
Diagram Modeller.

GraphViz SVG Output: Writes the SVG XML for a diagram. See GraphViz.
Protocol: File Transfer. A file with a known path is used to transport the data.

Normally it will be written to a temporary file first and then renamed to
prevent race conditions with partially written data.

: Diagram
GraphViz | IF50) } SASSY
Graphviz has port VG is connected to »| Graphviz is connected to Mg{j/eger isaport for Diagram
Output SVG Input Modeller

Figure 123: IF50 GraphViz SVG

IF51 LaTeX: A latex format file containing the generated document.

Document Formatter Tex Output: Writes the tex file for a document. See
SASSY Document Formatter.

LaTeX Tex Input: Read the tex file defining a document. See latex.
Protocol: File Transfer. A file with a known path is used to transport the data.

Normally it will be written to a temporary file first and then renamed to
prevent race conditions with partially written data.

Document
SASSY has port Formatter isconnectedto [IF51 is connected to LaTex isaport for |
Document > Tex > latex
Formatter Tex Larex Input
Output p

Figure 124: TF51 LaTeX

IF52 LaTeX DVI: A DVI file containing the generated document.

LaTeX DVI Output: Writes the DVI file for a document. See latex.
dvipdfm Input: Read the DVI file. See dvipdfm.
Protocol: File Transfer. A file with a known path is used to transport the data.

Normally it will be written to a temporary file first and then renamed to
prevent race conditions with partially written data.

130

2 LOGICAL MODEL 2.2 Interface

LaTeX . IF52 . - .
latex has port DVI is connected to LaTex is connected to d\ll:wp%ftm isaport for »| dvipdfm
Output DVI p
Figure 125: IF52 LaTeX DVI
dvipdf : IF53 ’ -)
dvipdfm has port PDF is connected to Document is connected to > ?infte isaport for > evince
Output PDF p

Figure 126: IF53 Document PDF

IF53 Document PDF: A PDF file containing the generated document.
dvipdf PDF Output: Writes the PDF file for a document. See dvipdfm.
evince Input: Read a PDF file. See evince.

Protocol: File Transfer. A file with a known path is used to transport the data.

Normally it will be written to a temporary file first and then renamed to
prevent race conditions with partially written data.

IF54 Configuration Manager Graphics: Request to display graphics widgets.

Configuration Manager User Interface: Displays the state of the application.
See Configuration Manager.

Qt API: The API used to control Qt. See Qt.
Protocol: C++ Function Call

Configuration IF54
Configuration | has port Manager isconnected to _ | Configuration | isconnectedto | Qt isaport for | ot
Manager User Manager “ AP g
Interface Graphics

Figure 127: IF54 Configuration Manager Graphics

IF55 Gui Graphics: Requests to display graphics widgets.

Qt API: The API used to control Qt. See Qt.

GUI User Interface: Displays the state of the application. See SASSY GUI.
Protocol: C++ Function Call

IF58 GUI to Firefox: A request by the user interface to display a web page.

Firefox Command Input: Launches a new instance of Firefox or advises an ex-
isting instance to display the requested page. See Firefox.

GUI Firefox Interface: A system call that attempts to start Firefox displaying
an HTML page. See SASSY GUIL

Protocol: Unix Pipe

131

2.2 Interface 2 LOGICAL MODEL

SASSY hasport Gul is connected to IFS5 is connected to Qt isaport for |
GUI > Vs Gui APl > Qt
Interface Graphics
Figure 128: TF55 Gui Graphics
IF58 "
GUI : : Firefox ;
Sg%&l‘,Y has port »| Firefox is connected to Gtgl is connected to Command isaport for »| Firefox
Interface Firefox Input

Figure 129: IF58 GUI to Firefox

IF59 GraphViz Dot File: A GraphViz dot file containing a representation of a subset of
the ontology.

GraphViz Dot: Read the dot file specification for a diagram. See GraphViz.
Owl View Dot Output: Writes the dot file for a diagram. See owl-view.

Protocol: File Transfer. A file with a known path is used to transport the data.
Normally it will be written to a temporary file first and then renamed to
prevent race conditions with partially written data.

Owl IF59
i has port View isconnectedto | GraphViz | isconnectedto | GraphViz | isaport for _| A
owl-view Dot > Dot > Dot » GraphViz
Output File

Figure 130: IF59 GraphViz Dot File

IF60 OwlView Graphics: requests to display graphics widgets.

Owl View User Interface: Displays the state of the application. See owl-view.
Qt API: The API used to control Qt. See Qt.

Protocol: C++ Function Call

Oowl
f) IF60 : :
Jvi has port \L/JI ew is connected to owlvi is connected to Qt isaport for » O
e Graphics AR
Interface

Figure 131: IF60 OwlView Graphics

IF61 GraphViz SVG File: An SVG XML file containing a representation of a subset of
an ontology.

GraphViz SVG Output: Writes the SVG XML for a diagram. See GraphViz.

132

2 LOGICAL MODEL 2.2 Interface

Owl View SVG Input: Read the SVG XML for a diagram. See owl-view.

Protocol: File Transfer. A file with a known path is used to transport the data.
Normally it will be written to a temporary file first and then renamed to
prevent race conditions with partially written data.

Graphviz | IF61) Owl)
GraphViz has port NG is connected to Grg)/hglz is connected to \é{/e«év isaport for o] owl-view
Output v
File Input

Figure 132: IF61 GraphViz SVG File

133

2.3 Data Flow 2 LOGICAL MODEL

2.3 Data Flow

The steps through a system taken by important data items. This shows the transformations
applied to the data by the system.
2.3.1 Architecture Input

Flow of data for the storage of an architecture.

Protege

A
sused by

SASSY
Ontology

Figure 133: Architecture Input

Protege: A program for entering and organising ontologies.

Data: OWL data consisting of classes, individuals, object properties, data prop-
erties, and annotations.

SASSY Ontology: This is the ontology that captures the project specific aspects of
SASSY’s architecture.

2.3.2 Document Generation

The flow of data during the generation of a document.

SASSY
Document
Modeller

SASSY
Document
Formatter

isbuilt with

islinked viapipeto /islinked viapipeto \islinked with “_is built with islinked via socket to

isbuiltwith \isli ith)i iscalled by

SASSY
Diagram OWLAPI
Modeller

slinked viapipeto is used by

. SASSY
Graphviz Ontology

Figure 134: Document Generation

134

2 LOGICAL MODEL 2.3 Data Flow

SASSY Ontology: This is the ontology that captures the project specific aspects of
SASSY’s architecture.

Data: OWL data consisting of classes, individuals, object properties, data prop-
erties, and annotations.

OWLAPI: A Java component which provides a programming interface for OWL ontolo-
gies.

The OWL API is a Java API and reference implmentation for creating, manipulating and
serialising OWL Ontologies. The latest version of the API is focused towards OWL 2

Data: OWL data in the form of class expressions, axioms and annotations.

ICE Server: Provides a CORBA like interface to Java libraries allowing access from C++
programs, potentially on other machines.

Data: OWL data in the form of annotations, child classes, individuals, and refer-
ences.

ICE Client: Provides a CORBA like connection to an ICE server allowing access from
C++ to libraries written in other languages and potentially hosted on other machines.

Data: OWL data in the form of annotations, child classes, individuals, and refer-
ences.

SASSY Document Modeller: Navigates the ontologies to create an internal representa-
tion of the document.

Data: OWL data in the form of annotations, child classes, individuals, and refer-
ences.

SASSY Diagram Modeller: Navigates the ontologies to create the internal representa-
tion of the diagrams.

Data: A diagram specification using GraphViz dot which specifies nodes and
edges.

GraphViz: A package containing programs that can do diagram layouts.

saDocGen: Responsible for coordinating the generation of a document according to the
incoming commands. It uses the modeller and formatter components to perform the tasks.

SASSY Document Formatter: Converts the internal representation of the document,
and any diagrams, into a format according to the output language (eg LaTeX).

Data: The entire document as a LaTeX file.

latex: A component that converts a text file into well laid out and formatted documents.

Data: A representation of the document using DVI which is a byte code language
used to describe how to render a document.

dvipdfm: A program for converting DVI into PDF. It correctly handles hyper links.

135

2.4 Use Case 2 LOGICAL MODEL

2.4 Use Case

The sequence of components that are involved in processing a particular use case.

2.4.1 Document Generation

Flow of control during the process of generating a document.

SASSY User: A user of SASSY.

SASSY GUI: Responsible for collecting the user’s input and passing the resultant
data to the document generator component.

saDocGen: Responsible for coordinating the generation of a document according
to the incoming commands. It uses the modeller and formatter components
to perform the tasks.

SASSY Document Modeller: Navigates the ontologies to create an internal
representation of the document.

latex: A component that converts a text file into well laid out and formatted
documents.

dvipdfm: A program for converting DVI into PDF. It correctly handles hyper
links.

SASSY Diagram Modeller: Navigates the ontologies to create the internal rep-
resentation of the diagrams.

GraphViz: A package containing programs that can do diagram layouts.

136

2 LOGICAL MODEL 2.5 Quality Attribute Scenarios

2.5 Quality Attribute Scenarios

Quality attribute scenarios are the basis for testing a system to determine if the quality
requirements of the system have been met.

2.5.1 Computational Scenarios

Computational scenarios are concerned with those quality attributes that are a function of
computations of the software under test. They are concerned with what software does while
it is running.

Durability: Refers to the the ACID property which guarantees that transaction’s that
have committed will survive permanently.

Source Of Stimulus: An analyst updating the knowledge-base.
Stimulus: An update that changes the content of the knowledge-base.
Environment: Normal operation of the system.

Artifact: The user interface and connected database.

Response: The data is stored.

Response Measure: The data can be retrieved.

Fault Tolerance: How well the system copes when things start to go wrong.

Source Of Stimulus: Architect updating the knowledge base.
Stimulus: An invalid entry in the knowledge base.
Environment: System working under normal conditions.
Artifact: Document generation components.

Response: Report error condition.

Response Measure: Able to continue once the error condition is corrrected.

Resilience: How well the system copes with the unexpected.

Source Of Stimulus: Architect entering an update to the knowledge database.
Stimulus: An invalid entry in the knowledge database.

Environment: System working under normal conditions.

Artifact: Document generation components.

Response: Report error condition.

Response Measure: Able to continue operation once the invalid enty is cor-
rected.

137

2.5 Quality Attribute Scenarios 2 LOGICAL MODEL

2.5.2 Deployment Scenarios
Deployment scenarios are concerned with the installation and setup of the software system.

These are usually the concern of the system administrator.

Demonstrability: How easy it is to demonstrate the system.

Source Of Stimulus: Potential new users of the system.

Stimulus: A request for the system to be demonstrated to a group of potential
new users.

Environment: A working Linux environment with the required software installed.
Artifact: The entire system with a demonstration project installed.
Response: The system is demonstrated to the users.

Response Measure: How well the system was understood.

2.5.3 Process Scenarios

Process scenarios are concerned with the development process used to create the software.

2.5.4 Software Scenarios
Software scenarios are concerned with the quality of the source code for the system. This

impacts on how easy it is to change, for example. This is the concern of the programmers.

Analyzability: Concerned with how easy it is to understand the system.
Source Of Stimulus: A developer needing to maintain or enhance the system.
Stimulus: The need to modify the system.
Environment: A working development environment with the source for SASSY.
Artifact: The documentation and source code.

Response: The system is modified as required, and without introducing further
problems.

Response Measure: The time taken to design the modification.

Portability: Concerned with how easy it is to port the system to a new platform.
Source Of Stimulus: A potential user of the system.

Stimulus: A request to have the system run on some platform that is not currently
supported.

Environment: The source code fo the system.
Artifact:
Response: A working system for the new platfom.

Response Measure: The time to implement the system for the required new
platform.

138

2 LOGICAL MODEL 2.5 Quality Attribute Scenarios

Replaceability: Concerned with how easy it will be to replace the system without losing
too much of the work invested in this system.

Source Of Stimulus: A user of the system that wants to use some alternative
product.

Stimulus: A request to export the contents of the knowledge base and the struc-
ture of the reports.

Environment: A working version of SASSY and its replacement.
Artifact: The knowledge base and report formats.
Response: The replacement system is able to produce equivalent documentation.

Response Measure: The time taken to export the data in a fom that can be
introduced it into the replacement system. Note that the time to do the
import is outside of the scope of this scenario.

Testability: Concerned with how easy it is to test the system.

Source Of Stimulus: A tester who needs to apply some new test to the system.
Stimulus: A requirement for a new test.

Environment: The system woking under the circumstances prescribed by the
test.

Artifact: The system, or the part of it applicable to the test.
Response: The system running the test.

Response Measure: The report produced by the test.

Upgradeability: Concerned with the ability to replace components of the system with
newer alternatives.

Source Of Stimulus: The architect rrecommending an upgrade.
Stimulus: The availability of a better component.

Environment: The development environment for constructing a new version of
the system.

Artifact: The source code, libraries and knowledge database.
Response: The system working with the replaced component.

Response Measure: The time taken to build and test the system with the new
component.

2.5.5 Specification Scenarios

Specification scenarios are concerned with the quality of the specifications for the software.
This is the concern of the designers and architects.

139

2.5 Quality Attribute Scenarios 2 LOGICAL MODEL

Adaptability: Concerned with the ease with which the system can be adapted to new
requirements.

Source Of Stimulus: The users of the system.
Stimulus: A new requirement on the system is identified.

Environment: A working development environment with the documentation and
source for SASSY.

Artifact: The documentation and source code.

Response: The system is modified as required, and without introducing further
problems.

Response Measure: The time taken to design the modification.

Changeability: Concerned with the ease with which the system can be modified.

Source Of Stimulus: A developer needing to maintain or enhance the system.
Stimulus: The need to modify the system.

Environment: A working development environment with the source for SASSY.
Artifact: The documentation and source code.

Response: The system is modified as required, and without introducing further
problems.

Response Measure: The time taken to design the modification.

Modularity: Concerned with how well the system is divided into modules.

Source Of Stimulus:
Stimulus:
Environment:
Artifact:

Response:

Response Measure:

140

2 LOGICAL MODEL 2.6 SASSY Plan

2.6 SASSY Plan

The plan for the development of SASSY.

SASSY will start off as a one-person project until it has a basic set of functionality and
can demonstrate its usefulness. It will be done in private at first, perhaps with some reviews
by interested others. Later it will be uploaded to SourceForge so that it can be further
reviewed by others, and eventually so that development can be shared.

The development will use a spiral model with multiple increments that expand both the
functionality and the quality of the system.

2.6.1 Increment O

The aim of the first increment is to put into place the development environment and to
provide a very rough sketch of what the project will look like.
It will consist of a quick pass through the methodology tasks to establish a first cut for
each task.

Vision Statement: Prepare the vision statement for SASSY. See Vision State-
ment.

Preliminary Analysis: Perform a review of the literature concerning software
architecture and also concerning the use of knowledge management and on-
tologies as part of the software development process. See Preliminary Anal-
ysis.

Requirements Gathering: Create a list of all the requirements for SASSY. See
Requirements Gathering.

Project Tools: Start a document that describes how to manage each tool that is
used during the construction of SASSY. See Project Tools.

Architecture: Create a document describing the overall structure of SASSY.

This is a temporary document since the purpose of SASSY is to generate the
architecture documentation and we will use SASSY itself as our first example.
See Architecture.

Component Exploration: Create some small projects that use the components
that will be part of SASSY. See Component Exploration.

User Interface Design: Try out the Qt user interface design tools. See User
Interface Design.

Implementation: Create some initial ontologies so that we have something to
test with. Start with an ontology of quality attributes. See Implementation.

Post Implementation Review: A short review of what we did for this incre-
ment. See Post Implementation Review.

2.6.2 Increment 1

The aim of the second increment is to demonstrate that we can generate documentation
from the contents of an ontology.

141

2.6 SASSY Plan 2 LOGICAL MODEL

Architecture: Outline the design of the programs required to generate a docu-
ment from the contents of an ontology. See Architecture.

Component Exploration: Investigate the best way to use ICE and OWLAPI.
See Component Exploration.

Application Specification: Outline the design of the Java and C++ programs.
See Application Specification.

Class Design: Produce an outline of the classes. See Class Design.
Implementation: Implement the Java and C++ code. See Implementation.

Use Case Test: Verify that the document produced contains the required con-
tent. See Use Case Test.

Post Implementation Review: A short review of how went. See Post Imple-
mentation Review.
2.6.3 Increment 2

This increment will see a rough version of the entire system developed. It may use various
short-cuts and other lower quality tactics but it should result in a simplified version of the
final product.

2.6.4 Increment 3

This increment adds some refinements to the system. Cross references between the logical
and conceptual models will be added where both models have been requested. The code will
be re-factored and generally cleaned up. Diagrams will be scaled and oriented based on their
size and shape.

2.6.5 Increment 4

This increment will add a query language to the design. Views will be defined in terms of
a query on the ontology database. We will attempt to use SPARQL-DL, or develop a simple
query language of our own if that proves unreliable. We will also add sufficient complexity
to the ontologies to verify that the views work.
2.6.6 Increment 5

Add ontologies for Design Patterns, Frameworks, Products, etc. Re-factor existing tactical,
conceptual and logical views. A full end-to-end example of an architecture will be produced.
2.6.7 Increment 6

This increment will add some process management so that server process are started au-
tomatically.
2.6.8 Increment 7

Improve maintainability by developing the logging and code tracing components.

142

2 LOGICAL MODEL 2.6 SASSY Plan

2.6.9 Increment 8

This increment will add support for multiple projects. The SASSY specifics will be split
out.
Allow users to define some project specific data, probably held in an XML file. Set up
templates for creating new projects.
Test by setting up several new projects which can be used as test data, such as HPIDA,
APH and I21I.

143

2.7 Team View 2 LOGICAL MODEL

2.7 Team View

This view shows the responsibilities of the team members of the project.

2.7.1 System Administrator

Someone concerned with the overall administration of a computer system or network.

See Project Tools.

Brenton Ross: The grumpy old man behind the development of SASSY.

2.7.2 Analyst

Someone concerned with finding out how a system operates and for looking at ways of
improving it.

See Preliminary Analysis, Feasibility Study, Modelling and Requirements
Gathering.

Brenton Ross: The grumpy old man behind the development of SASSY.

2.7.3 Architect

Someone concerned with the high level design of the system.

See Architecture and Post Implementation Review.

Brenton Ross: The grumpy old man behind the development of SASSY.

2.7.4 Database Administrator

Someone concerned with the organisation and performance of databases.

2.7.5 Designer

Someone responsible for converting the set of requirements into a design for a system.

See Migration Planning, Application Specification, User Interface Design, Use
Case Design, System Test Support Design, Class Design, Design Review,
Generalisation and Post Implementation Review.

Brenton Ross: The grumpy old man behind the development of SASSY.

2.7.6 Developer

Someone responsible for converting designs into executable programs.
See Interface Stubs, Component Exploration, Code Generation, Implemen-
tation, Code Review, Interface and Application Integration, Generalisation,

Packaging and Post Implementation Review.

Brenton Ross: The grumpy old man behind the development of SASSY.

144

2 LOGICAL MODEL 2.7 Team View

2.7.7 Network Engineer

Someone concerned with the interconnection of computers and network equipment.

2.7.8 Project Manager

Someone responsible for delivering the required system within the constraints of budget
and time.

See Vision Statement and Post Implementation Review.
Brenton Ross: The grumpy old man behind the development of SASSY.

2.7.9 Tester

Someone responsible for detecting flaws in the system.

See Test Planning, Test Case Design, Use Case Test, System Integration
Testing and Acceptance Testing.

Brenton Ross: The grumpy old man behind the development of SASSY.

145

3 PHYSICAL MODEL

3 Physical Model

A physical model is concerned with the distribution of the software components onto
hardware components. This can include processes on computers or threads on CPUs.

3.1 Execution Modules

A description of the system in terms of its running components.
Protege: A program for entering and organising ontologies.

This program is run on:

User Desk Top: A computer optimised for personal use.

This program uses the following shared libraries:

Java Virtual Machine: Executes Java byte code.
dvipdfm: A program for converting DVI into PDF. It correctly handles hyper links.

This program is run on:

User Desk Top: A computer optimised for personal use.
evince: A program for displaying PDF files.

This program is run on:

User Desk Top: A computer optimised for personal use.
icedowl: Server program to retrieve OWL data.

This program is run on:

Application Server: A machine on which application programs are hosted. These
may be programs that have no user interaction, or use some other mechanism
for that user interaction such as an X server or a web interface.

This program uses the following shared libraries:

ICE Server: Provides a CORBA like interface to Java libraries allowing access
from C++4 programs, potentially on other machines.

Java Virtual Machine: Executes Java byte code.

OWLAPI: A Java component which provides a programming interface for OWL
ontologies.
The OWL API is a Java API and reference implmentation for creating, ma-
nipulating and serialising OWL Ontologies. The latest version of the API is
focused towards OWL 2

146

3 PHYSICAL MODEL 3.1 Execution Modules

latex: A component that converts a text file into well laid out and formatted documents.

This program is run on:

User Desk Top: A computer optimised for personal use.
owl-view: Enables a user to view all relationships, classes and individuals in an ontology.

This program is run on:

User Desk Top: A computer optimised for personal use.

This program uses the following shared libraries:

Qt: A library providing platform and user interface abstraction.

saDocGen: Responsible for coordinating the generation of a document according to the
incoming commands. It uses the modeller and formatter components to perform the tasks.

This program is run on:

User Desk Top: A computer optimised for personal use.

This program uses the following shared libraries:

ICE Client: Provides a CORBA like connection to an ICE server allowing access
from C++ to libraries written in other languages and potentially hosted on
other machines.

Log Stream: Provides a C++ stream style interface for logging events within
application and server programs. It passes the log messages to a logging
server.

SASSY GUI: Responsible for collecting the user’s input and passing the resultant data
to the document generator component.

This program is run on:

User Desk Top: A computer optimised for personal use.

This program uses the following shared libraries:

Qt: A library providing platform and user interface abstraction.
saLogger: Writes log events to disk.

This program is run on:

Logging Server: Computer optimised to write log messages.

147

3.2 Computer View 3 PHYSICAL MODEL

3.2 Computer View

A view showing what is running on each machine.

3.2.1 Application Server

A machine on which application programs are hosted. These may be programs that have
no user interaction, or use some other mechanism for that user interaction such as an X
server or a web interface.

The following processes are run on this machine:

icedowl: Server program to retrieve OWL data.

3.2.2 Database Server
A machine hosting the databases used by the project.

3.2.3 Logging Server

Computer optimised to write log messages.

The following processes are run on this machine:

saLogger: Writes log events to disk.

3.2.4 User Desk Top

A computer optimised for personal use.

The following processes are run on this machine:

Protege: A program for entering and organising ontologies.

dvipdfm: A program for converting DVI into PDF. It correctly handles hyper
links.

evince: A program for displaying PDF files.

latex: A component that converts a text file into well laid out and formatted
documents.

owl-view: Enables a user to view all relationships, classes and individuals in an
ontology.

saDocGen: Responsible for coordinating the generation of a document according
to the incoming commands. It uses the modeller and formatter components
to perform the tasks.

SASSY GUI: Responsible for collecting the user’s input and passing the resultant
data to the document generator component.

3.2.5 Web Server

A computer used to host a web server program such as Apache.

148

3 PHYSICAL MODEL 3.3 License View

3.3 License View
This view shows the licenses applicable to the components of the system.
Architecture Ontology: An ontology of software architecture terms. This is the reference
architecture that forms the core of SASSY.
Creative Commons: Creative Commons Attribution-Share Alike 3.0 Unported

License.

Development Ontology: An ontology of software development terms. This ontology is
all about the development process. The project ontology will import this one and add tasks
and team members.

Creative Commons: Creative Commons Attribution-Share Alike 3.0 Unported
License.

Dictionary Ontology: A project specific ontology that captures the terms used on the
project that have project specific meanings.

Creative Commons: Creative Commons Attribution-Share Alike 3.0 Unported
License.

Quality Attribute Ontology: A reference ontology containing all known quality at-
tributes. This is used when developing the requirements for a project.

Creative Commons: Creative Commons Attribution-Share Alike 3.0 Unported
License.

Requirements Ontology: This is a project specific ontology that captures the require-
ments for that project.

Creative Commons: Creative Commons Attribution-Share Alike 3.0 Unported
License.

SASSY Ontology: This is the ontology that captures the project specific aspects of
SASSY’s architecture.

Creative Commons: Creative Commons Attribution-Share Alike 3.0 Unported
License.

Tactics Ontology: This is a reference ontology that is used to map the project’s require-
ments to the responsibilities of its components.

Creative Commons: Creative Commons Attribution-Share Alike 3.0 Unported
License.

ICE Server: Provides a CORBA like interface to Java libraries allowing access from C+-+
programs, potentially on other machines.

GPL v2: GNU General Public License version 2

149

3.3 License View 3 PHYSICAL MODEL

OWLAPI: A Java component which provides a programming interface for OWL ontolo-
gies.

The OWL API is a Java API and reference implmentation for creating, manipulating and
serialising OWL Ontologies. The latest version of the API is focused towards OWL 2

LGPL: Lesser GNU Public License, also known as the Library GNU Public License
as it allows linking by non-GPL applications.

ICE Client: Provides a CORBA like connection to an ICE server allowing access from
C++ to libraries written in other languages and potentially hosted on other machines.

GPL v2: GNU General Public License version 2

Log Stream: Provides a C++ stream style interface for logging events within application
and server programs. It passes the log messages to a logging server.

GPL v3: GNU General Public License version 3

SASSY Diagram Modeller: Navigates the ontologies to create the internal representa-
tion of the diagrams.

GPL v3: GNU General Public License version 3

SASSY Document Formatter: Converts the internal representation of the document,
and any diagrams, into a format according to the output language (eg LaTeX).

GPL v3: GNU General Public License version 3

SASSY Document Modeller: Navigates the ontologies to create an internal representa-
tion of the document.

GPL v3: GNU General Public License version 3

Configuration Manager: Manages the configuration data for SASSY.

GPL v3: GNU General Public License version 3

Firefox: An HTML web browser.

Mozilla Public License: Open source license sponsored by the Mozilla founda-
tion.

GraphViz: A package containing programs that can do diagram layouts.

Eclipse Public License: Open source license used by Eclipse. Derived from an
IBM open source license.

Java Virtual Machine: Executes Java byte code.

GPL v2: GNU General Public License version 2

150

3 PHYSICAL MODEL 3.3 License View

latex: A component that converts a text file into well laid out and formatted documents.
LGPL: Lesser GNU Public License, also known as the Library GNU Public License
as it allows linking by non-GPL applications.
Process Manager: Responsible for starting, stopping and monitoring the SASSY pro-
cesses.

GPL v3: GNU General Public License version 3

Protege: A program for entering and organising ontologies.
Mozilla Public License: Open source license sponsored by the Mozilla founda-
tion.
Software Manager: Responsible for ensuring the required software is installed and run-
ning.

GPL v3: GNU General Public License version 3

dvipdfm: A program for converting DVI into PDF. It correctly handles hyper links.
GPL v2: GNU General Public License version 2

evince: A program for displaying PDF files.
GPL v2: GNU General Public License version 2

icedowl: Server program to retrieve OWL data.

GPL v3: GNU General Public License version 3

owl-view: Enables a user to view all relationships, classes and individuals in an ontology.
GPL v3: GNU General Public License version 3

saDocGen: Responsible for coordinating the generation of a document according to the

incoming commands. It uses the modeller and formatter components to perform the tasks.
GPL v3: GNU General Public License version 3

SASSY GUI: Responsible for collecting the user’s input and passing the resultant data

to the document generator component.

GPL v3: GNU General Public License version 3

saLogger: Writes log events to disk.
GPL v3: GNU General Public License version 3

Data Manager: Responsible for detecting changes to ontologies and notifying anything
that registered its need to know.

GPL v3: GNU General Public License version 3

151

3.3 License View 3 PHYSICAL MODEL

Qt: A library providing platform and user interface abstraction.

GPL v2: GNU General Public License version 2

152

3 PHYSICAL MODEL 3.4 Network View

3.4 Network View

This view shows the network connections between components of the system, and any

external systems.

NCO01 DocGen OWL: Connection from the OWL interface to the document generator.
See IF11 ICE Remote Procedure Call.

This interface connects the following processes:

icedowl: Server program to retrieve OWL data.
running on

Application Server: A machine on which application programs are hosted. These
may be programs that have no user interaction, or use some other mechanism

for that user interaction such as an X server or a web interface.

saDocGen: Responsible for coordinating the generation of a document according
to the incoming commands. It uses the modeller and formatter components

to perform the tasks.
running on

User Desk Top: A computer optimised for personal use.

NCO02 View OWL: Connection from the OWL interface to the owl viewer. See IF11 ICE
Remote Procedure Call.

This interface connects the following processes:
icedowl: Server program to retrieve OWL data.
running on
Application Server: A machine on which application programs are hosted. These
may be programs that have no user interaction, or use some other mechanism

for that user interaction such as an X server or a web interface.

owl-view: Enables a user to view all relationships, classes and individuals in an
ontology.

running on

User Desk Top: A computer optimised for personal use.

NCO03 DocGen Log: Connection from the document generator to the log server. See IF48
Log Message.

153

3.4 Network View 3 PHYSICAL MODEL

This interface connects the following processes:

saLogger: Writes log events to disk.
running on
Logging Server: Computer optimised to write log messages.

saDocGen: Responsible for coordinating the generation of a document according
to the incoming commands. It uses the modeller and formatter components
to perform the tasks.

running on

User Desk Top: A computer optimised for personal use.
NC04 GUI Log: Connection from the GUI to the log server. See [F48 Log Message.

This interface connects the following processes:

saLogger: Writes log events to disk.
running on
Logging Server: Computer optimised to write log messages.

SASSY GUI: Responsible for collecting the user’s input and passing the resultant
data to the document generator component.

running on

User Desk Top: A computer optimised for personal use.

154

	Conceptual Model
	Requirements
	Functional Requirements
	Environmental Requirements
	Quality Requirements

	Tactics
	Deployment Tactics
	Development Tactic
	Transaction
	Modifiability Tactics
	Defer Binding
	Object Oriented Design
	Performance Monitoring
	Introduce Concurrency
	Single Thread
	Usability Tactics
	Task Oriented
	Use COTS Products
	Process Tactic
	Reviews
	Spiral Development
	Runtime Tactic
	Multiple Processes

	Concept Modules
	Administration Manager
	Browser
	Configuration Manager
	Document Description Language Interpreter
	Document Descrition Language Parser
	Diagram Modeller
	Document Formatter
	Document Generator
	Document Modeller
	Log Event Notifier
	Logger
	OWL Database
	OWL Gui
	OWL Interface
	Operating System
	OWL Viewer
	PDF Creator
	PDF Viewer
	SASSY
	SASSY User Interface
	Trace Event Generator
	Version Control
	Ontology
	Project Ontology
	Architecture Ontology
	Configuration Ontology
	Dictionary Ontology
	Requirements Ontology
	Traceability Ontology
	Reference Ontology
	Design Pattern Ontology
	Development Ontology
	Products Ontology
	Quality Attribute Ontology
	Tactics Ontology
	View Ontology

	Methodology
	SASSY Plan
	Process
	Activity

	Logical Model
	Implementation Modules
	Fedora Linux
	ICE
	Subversion
	Architecture Ontology
	Development Ontology
	Dictionary Ontology
	Quality Attribute Ontology
	Requirements Ontology
	SASSY Ontology
	Tactics Ontology
	ICE Server
	OWLAPI
	ICE Client
	Log Stream
	SASSY Diagram Modeller
	SASSY Document Formatter
	SASSY Document Modeller
	Configuration Manager
	Firefox
	GraphViz
	Java Virtual Machine
	latex
	Process Manager
	Protege
	Software Manager
	dvipdfm
	evince
	icedowl
	owl-view
	saDocGen
	SASSY GUI
	saLogger
	Data Manager
	Qt

	Interface
	External Interface
	System Interface
	Component Interface
	Product Interface

	Data Flow
	Architecture Input
	Document Generation

	Use Case
	Document Generation

	Quality Attribute Scenarios
	Computational Scenarios
	Deployment Scenarios
	Process Scenarios
	Software Scenarios
	Specification Scenarios

	SASSY Plan
	Increment 0
	Increment 1
	Increment 2
	Increment 3
	Increment 4
	Increment 5
	Increment 6
	Increment 7
	Increment 8

	Team View
	System Administrator
	Analyst
	Architect
	Database Administrator
	Designer
	Developer
	Network Engineer
	Project Manager
	Tester

	Physical Model
	Execution Modules
	Computer View
	Application Server
	Database Server
	Logging Server
	User Desk Top
	Web Server

	License View
	Network View

