
SASSY

SOFTWARE ARCHITECTURE SUPPORT SYSTEM

Preliminary Analysis

Publication History

Date Who What Changes

22 August 2010 Brenton Ross Initial version.

11 April 2017 Brenton Ross Rewitten for the second attempt at this project

Copyright © 2009 - 2017 Brenton Ross
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
The software is released under the terms of the GNU General Public License version 3.

ii

Preliminary Analysis

Table of Contents
 1 Introduction..1

 1.1 Scope..1
 1.2 Overview...2
 1.3 Audience...2

 2 Software Architecture Definition...3
 2.1 Structure..3
 2.2 Outline..4
 2.3 Quality Attributes..4
 2.4 Quality Attribute Scenarios...5
 2.5 Strategy and Tactics..5

 2.5.1 Divide and Conquer..5
 2.6 Products and Design Patterns...6
 2.7 Documentation..7
 2.8 Analysis..8

 3 Current Methodology...9
 3.1 Problems...9
 3.2 Chaos Theory..10

 4 Ontologies...11
 4.1 Data Dictionary...11
 4.2 Requirements..11
 4.3 Software Architecture...12

 4.3.1 Quality Attributes..12
 4.3.2 Tactics...12
 4.3.3 Design Patterns...12
 4.3.4 Products...13

 4.4 Traceability...13
 4.5 Configuration Management..13

 5 Interfaces..14
 5.1 Input Interfaces...14
 5.2 Output Interfaces..14
 5.3 Quality Requirements...15
 5.4 Document Format...15
 5.5 Diagram Format..15

 6 Component Exploration...16
 6.1 Storage..16

 6.1.1 RDF Tools...16
 6.1.2 OWL Tools..16

 6.2 Data Entry...17
 6.3 Document Generation...17

 6.3.1 Queries..17
 6.3.2 Natural Language Generation...17
 6.3.3 Document Formatting...19
 6.3.4 Diagram Creation..20

iii

Preliminary Analysis

Appendix A SimpleNLG..22
 6.1 Overview...22
 6.2 The Processors..22

 6.2.1 Syntax Processor...22
 6.2.2 Morphology Processor..23

Appendix B – Thoughts on NLG...24

 - 4 - SASSY

Preliminary Analysis Introduction

 1 Introduction
This document is the preliminary analysis for Software Architecture Support
System (SASSY).

The project aims to bring the power of knowledge engineering to the task of
developing a software architecture.

The goal is to enable the construction of systems which are far larger than
what is currently practical.

 1.1 Scope

The preliminary analysis task is to investigate the implications and
consequences of the Vision Statement. It has the task of setting the boundaries
for the project and for documenting the external interfaces to the systems that
the project will connect with.

A typical project will analyse the existing systems to gain a better
understanding of the environment that the new project must operate in. This
project is a green fields development where there is no existing system to
investigate. While this removes the task it also removes some constraints on
the analysis task which makes it harder to find the boundaries.

The scope of this preliminary analysis document is nicely summed up by the
following quote from [DES04].

“It is necessary to define the application domains on which a system is
to be put in place, and the processes that the system must support.
Terminology, definitions and domain boundaries are clarified, in order
to explain the problem in a clear context. In this domain, functioning
modes must be explained, in the form of business procedures, but also
in the form of rules and business constraints. An analysis of what
already exists must be carried out, by representing it as a system whose
structure, roles, responsibilities and internal and external information
exchanges are shown. All preliminary information must be collected, in
the form of documents, models, forms or any other representation. The
nature of the products developed by the processes is explained. ”

The scope of the Software Architecture Support System (SASSY) is the
software architecture phase of a software development project.

Garlan and Shaw [G&S94] described software architecture as the design
problems that go beyond the selection of algorithms and data structures:

“Structural issues include gross organization and global control
structure; protocols for communication, synchronization, and data
access; assignment of functionality to design elements; physical
distribution; composition of design elements; scaling and performance;
and selection among design alternatives.”

 - 1 - SASSY

Preliminary Analysis Introduction

A common theme in the discussion of the nature of software architecture is
that it covers those design issues that encompass more than one component
module of the system. Issues that can be resolved for a single module, and
which have no impact on other modules can be left to the design phase for
those modules. It follows from this that the selection of algorithms and data
structures is outside the scope of software architecture since these are detailed
design issues. For example, [M&B05] describe the central concerns of an
architect as being these:

• system priority setting

• system decomposition and composition

• system properties, especially cross-cutting concerns

• system fit to context

• system integrity

The SASSY project aims to provide support for the software architecture
process, especially for very large projects.

The analysis and requirements activities supply the inputs to the architecture
activity. It might be advantageous to provide something that can record this
information so that it can be readily used by the proposed system. Similarly,
some support for the following detailed design tasks may be possible.

 1.2 Overview

The application domain and the processes it must support are defined in
section 2.

The terminology and definitions are captured in the Data Dictionary document.

Section 3 describes in some detail the development of a software architecture
as it is currently performed, and itemises some of the issues with the current
process.

Section 4 discusses the various possibilities that ontologies might enable in the
domain of software architecture.

Section 5 describes the interfaces to the software architecture process.

Section 6 explores some of the potential products that may be of use.

 1.3 Audience

This document is intended for anyone with an interest in the SASSY project.

It will be used by the developers to record the reasoning behind some of the
decisions made during development.

It can be used by those wishing to determine if the software created by this
project would be useful.

 - 2 - SASSY

Preliminary Analysis Software Architecture Definition

 2 Software Architecture Definition
This section will try to describe what the software architecture process actually
is. If we are to provide some automated support then we need to define what
we are supporting.

 2.1 Structure

In the paper [M&B05] describe the architectural framework as having three
main layers:

• A meta-architecture with its focus on high-level decisions that will
strongly influence the structure of the system; rule certain structural
choices out, and guide selection decisions and trade-offs among others;

• An architecture with its focus on decomposition and allocation of
responsibility, interface design, assignment to processes and threads;
and

• A set of guidelines and policies which guide engineers in creating
designs that maintain the integrity of the architecture.

The meta-architecture takes the business strategy, the enterprise architecture,
the product family architecture, and anything learnt from the project initiation
to develop an architecture strategy document.

The architecture layer is further divided into three sub-layers:

• A conceptual architecture with a focus on identification of components
and allocation of responsibilities to components;

• A logical architecture with a focus on design of component
interactions, connection mechanisms and protocols, interface design
and specification, and providing contextual information for component
users;

• An execution architecture with a focus on assignment of the runtime
component instances to processes, threads and address spaces, how
they communicate and coordinate, and how physical resources are
allocated to them.

 - 3 - SASSY

Preliminary Analysis Software Architecture Definition

 2.2 Outline

At its core the software architecture process entails taking the requirements
and preliminary analysis and developing a set of documents and diagrams
describing the system to be constructed.

The functional requirements, and perhaps more importantly the quality
requirements are first examined in order to develop a set of tactics that will
best satisfy those requirements. The SA discipline has a large body of well
known tactics that can be combined to produce the approach for the specific
problem.

The tactics are then used select appropriate COTS products and to develop a
set of design patterns.

The project is divided into sub-projects which can each be separately
developed. Repeat recursively until each project is of a size that can be
completed by a small team within a reasonable timeframe. This is important
for large projects, since very few large projects ever complete successfully it is
necessary to subdivide them into manageable chunks to a size where the
success rate is more satisfactory.

The overall design is then subjected to an analysis to determine if it is a viable
solution.

The interfaces between these components is then fully documented so that
each sub-project can get under-way as soon as possible.

A set of scenarios are developed that will form the basis of the test cases for
the system. These tests are designed to ensure that not only are the functional
requirements met, but also the quality requirements.

 2.3 Quality Attributes

A fundamental driver to modern software architecture development are the
quality attributes that the system is required to have. Factors such as
performance, security, safety, usability and maintainability are often much
more important in the design process than the functional requirements.

It is so important to have these quality requirements that we should provide
some support in this system for their acquisition.

The core ontology for SASSY will be the software architecture knowledge
base. An important part of that ontology will be a collection of quality
attributes. The system should allow its user to assign an importance to each
attribute for the specific project and thus include the quality requirements in
the project's ontology.

 - 4 - SASSY

Preliminary Analysis Software Architecture Definition

 2.4 Quality Attribute Scenarios

These scenarios will form the basis for developing and testing the non-
functional aspects of the system. In Chapter 4 of their book [BAS03] describe
a scenario consisting of six parts:

• Source of stimulus. This is some entity (a human, a computer system,
or any other actuator) that generates the stimulus.

• Stimulus. The stimulus is a condition that needs to be considered when
it arrives at the system.

• Environment. The stimulus occurs within certain conditions. The
system may be in an overload condition or may be running when the
stimulus arrives, or some other condition may be true.

• Artifact. Some artifact is stimulated. This may be the whole system or
some pieces of it.

• Response. The response is the activity undertaken after the arrival of
stimulus.

• Response measure. When the response occurs, it should be measurable
in some fashion so that the requirement can be tested.

 2.5 Strategy and Tactics

In their introduction to tactics [BAS03] define a tactic as a design decision that
influences the control of a quality attribute response. They also define an
architectural strategy as the collection of tactics, and an architectural pattern as
something which packages one or more tactics.

 2.5.1 Divide and Conquer

One tactic that is common to any large project is to divide it into more
manageable pieces. [M&B05] describe how the complexity of a large project
can be addressed by the architecture:

This complexity presents itself in two primary guises:

• intellectual intractability. The complexity is inherent in the
system being built, and may arise from broad scope or sheer
size, novelty, dependencies, technologies employed, etc.
Software architecture should make the system more
understandable and intellectually manageable—by providing
abstractions that hide unnecessary detail, providing unifying
and simplifying concepts, decomposing the system, etc.

• management intractability. The complexity lies in the
organization and processes employed in building the system,
and may arise from the size of the project (number of people
involved in all aspects of building the system), dependencies in
the project, use of outsourcing, geographically distributed
teams, etc. Software architecture should make the development

 - 5 - SASSY

Preliminary Analysis Software Architecture Definition

of the system easier to manage—by enhancing communication,
providing better work partitioning with decreased and/or more
manageable dependencies, etc.

My experience with very large projects leads me to the conclusion that the first
partitions should be on political lines. This has the advantage that it also
divides the stakeholders which can be a significant step towards getting a
solution. All that has to happen is for the interfaces to be defined and each sub-
project can be worked upon independently.

This should be repeated recursively until tractable projects emerge.

A variation on the political division idea is to also include a “technical”
partition in addition to the functional partitions. This is made responsible for
the common aspects of the system. It can be an easy sell to the stakeholders as
it reduces their individual costs, being a shared component. You can then move
functions in or out of the technical sub-project as best suits the design. The
stakeholders will then also gain an appreciation of the cost of having a special
component, and may decide that the cheaper alternative is to modify the
business process instead.

The software architecture ontology will include a collection of tactics that have
been documented. The ontology should also include the relationship between
the tactics and the quality attributes, which might even allow some automation
of tactic selection.

 2.6 Products and Design Patterns

Once the tactics for achieving the desired quality and functionality have been
selected the next step is to choose the design patterns that can best implement
those tactics. Note that we are not interested in design patterns that deal with
algorithms and data structures (such as the observer pattern) but rather we are
looking for structural design patterns such as a client-server design.

We will also be looking at various existing products that can be used to
implement the selected design. For example a message based design might
select IBM's Websphere-MQ message queuing product.

Selecting a COTS product may have some side effects. In their book [WAL02]
repeatedly stress that the examination of a COTS product may influence the
requirements for the project. When users see what a product is capable of, they
may want their system to also have that capability. This is to be expected. They
also describe cases where the software exhibited behaviour that was not
desired because the functionality was not correctly disabled, for example.

The options available will present different flexibility choices. A commercial
product will constrain the remainder of the system to its interfaces. An open
source product, if used unchanged would be the same, but there is the
possibility of making modifications to it. The most flexible alternative is to
build your own, but that flexibility comes at the cost of doing the development,
and the corresponding time delay. A possible option is to start with COTS, then
migrate to OSS or in-house developed at a later release of the system, once the
initial time-to-market pressure has eased.

 - 6 - SASSY

Preliminary Analysis Software Architecture Definition

For SASSY we have already decided that the software will be GPL, so the
COTS option has been eliminated.

In their Attribute Driven Design technique [BAS03] describe the following
steps for designing the architecture:

 1. Choose the module to decompose. The module to start with is usually
the whole system. All required inputs for this module should be
available (constraints, functional requirements, quality requirements).

 2. Refine the module according to these steps:

 a) Choose the architectural drivers from the set of concrete quality
scenarios and functional requirements. This step determines what is
important for this decomposition.

 b) Choose an architectural pattern that satisfies the architectural
drivers. Create (or select) the patterns based on the tactics that can
be used to achieve the drivers. Identify child modules required to
implement the tactics.

 c) Instantiate modules and allocate functionality from the use cases
and represent using multiple views.

 d) Define interfaces to the child modules. The decomposition provides
modules and constraints on the types of module interactions.
Document this information in the interface document for each
module.

 e) Verify and refine use cases and quality scenarios and make them
constraints for the child modules. This step verifies that nothing
important was forgotten and prepares the child modules for further
decomposition or implementation.

 3. Repeat the steps above for every module that needs further
decomposition.

We will need to have an ontology of architectural design patterns as part of the
SASSY core. Building a useful ontology of COTS and OSS products would be
useful, but an enormous undertaking. Perhaps once SASSY has been in use for
a while this can be incorporated.

 2.7 Documentation

The proposed design is documented in a series of Views, each from the
viewpoint of one or more stakeholders.

It is important to keep the number of viewpoints in each diagram or document
to a minimum, otherwise there will be confusion over what the document is
trying to express.

This means that for a large system there can be a multitude of documents,
which can become a hindrance to the understanding of the system in its own
right.

 - 7 - SASSY

Preliminary Analysis Software Architecture Definition

In the paper [M&B05] describe six types of architectural views – behavioural
and a structural views for each of the conceptual, logical, and execution
architecture. They go on to suggest the the following should form the
minimum set:

• Reference Specification. The full set of architecture drivers, views, and
supplements such as the architecture decision matrix and issues list,
provides your reference specification.

• Management Overview. For management, you would want to create a
high-level overview, including vision, business drivers, Architecture
Diagram (Conceptual) and rationale linking business strategy to
technical strategy.

• Component Documents. For each component owner, you would ideally
want to provide a system- level view (Logical Architecture Diagram),
the Component Specification for the component and Interface
Specifications for all of its provided interfaces, as well as the
Collaboration Diagrams that feature the component in question.

 2.8 Analysis

Once a design has emerged it needs to be analysed to determine how well it
will meet the requirements. The analysis is usually a risk based approach since
a complete formal analysis would be too time consuming.

Each quality scenario is examined in turn. For each one a rating of its
importance is given – low, medium or high. The stakeholders will need to
discuss and agree on these ratings.

Then each scenario is examined to see how it will perform under the proposed
design. A risk level (low, medium or high) is assigned indicating how easy it is
likely to be that the requirement can be met.

The important and high risk scenarios become candidates for alternative tactics
or designs.

The Architecture Trade-off Analysis Method (ATAM) is fully described in
[BAS03]

 - 8 - SASSY

Preliminary Analysis Current Methodology

 3 Current Methodology
This section attempts to describe the current techniques used to develop a
software architecture.

For small systems it is quite common for there to be no architectural design at
all. If the system is be created in a highly constrained environment there may
be no choices to make about the architecture. For example, a program that is
required to run on the .NET platform does not need to make decisions about
the operating system, GUI, database, or a whole host of other components that
come as standard on that platform. The developers can jump straight to the
detailed design of data structures and algorithms. This can give a sense of
productivity increase – programs are created sooner – but at the cost of being
locked into a single vendor solution.

The usual technique is to discuss, often around a whiteboard, various options
until some sort of rough decision is made. This is then documented using word
processing documents and UML diagrams. The results are then reviewed and
updated until the architecture team is comfortable with the design. This may be
followed up with the ATAM or similar process if the project is important.

 3.1 Problems

There are several issues with the current technique.

The process is highly dependent on the skill of the architects. There is little to
guide them apart from their previous experience. This can be a problem for
architects that are repeatedly involved in multi-year projects as the technology
advances at a pace that can leave them behind, perhaps even making their
experience counter-productive.

For large systems, with many stakeholders, it can be difficult to create the
documents. If you combine too many points of view into the one document
then it becomes confusing to read, filled with details that each individual
reader is not interested in. Alternatively if you create many separate documents
and diagrams it becomes difficult to keep them all up-to-date and
synchronised.

For very large systems it is not practical to build the entire system from
scratch. You have to build it by combining various 3rd party products. The
architect therefore has to be familiar with those products in order to select
them and to work out how they can be combined. The pace of development in
the software world and the sheer number of available products makes it very
difficult for the architect to be up-to-date with what's available.

The information in the software architecture, and the information from which
it was derived is rarely held in machine processable form. It is usual to use
word processors and diagramming tools which have there own, often opaque,
data formats which can be difficult to process. In any case the structure of a

 - 9 - SASSY

Preliminary Analysis Current Methodology

word processing document is not the best place to store information if you
want to machine process it. This means that it is virtually impossible to build
tools to assist with the architecture task.

The reasons behind the decisions are rarely documented. The documents tend
to show the final design, rather than the reasoning that went into it. This means
that later iterations of the product cannot confirm that the basis of the design is
still valid.

For many systems it is important that all artifacts of the system be traceable
back to the original requirements. Special effort has to be made to document
the architecture with the trace information.

 3.2 Chaos Theory

Mathematicians have found that even quite simple systems can exhibit chaotic
behaviour under some circumstances.

One system that might be relevant to software development is the inverse
exponential growth with delay. The growth function is one that approaches
some maximum asymptotically, where the rate of change depends on how
much there is left to do. Without any delays this function smoothly approaches
the target value. However as delays are introduced, such as the rate of change
being dependent on what was remaining at some previous time, the function
starts to oscillate wildly about the target.

If we model a typical software development project as having its progress
dependent on the amount remaining to do then the parallel becomes evident.
(In the beginning rapid progress is made as each component is individually
developed. Then as we near the conclusion we should just have minor bug
fixes.)

However, in practice there are delays built into the process. For example a
developer might not be informed about a new API behaviour until its
completed, and therefore her dependent code will need to be updated.

We can therefore see how these delays can contribute to chaos in the
development. Some methodologies attempt to solve this issue by doing nightly
or even continuous builds. This does not always help since its not the actual
components that are important, but the programmer's understanding that must
be kept up-to-date.

To really avoid a chaotic development environment you need to keep the
delays out of the process. This is only possible on a small project where the
whole team is familiar with nearly all details. For a large, or enormous project
the architect must partition it into independently developed small projects.
This, in turn, implies that the interfaces must be well developed at the start of
the build and should not be allowed to drift as the work proceeds.

 - 10 - SASSY

Preliminary Analysis Ontologies

 4 Ontologies
In their papers [BER06] and [HAP06] four different purposes are proposed for
using ontologies:

• Ontology–driven development (ODD): ontologies are used at
development time to describe the domain.

• Ontology–enabled development (OED): ontologies are used at
development time to support developers with their activities.

• Ontology–based architectures (OBA): ontologies are used at run time
as part of the system architecture.

• Ontology–enabled architectures (OEA): ontologies are used at run time
to provide support to the users.

The SASSY project aims to demonstrate how ODD and OED can be used
during the architecture phase of development. Of course this means that the
SASSY project itself will also use OBA and OEA.

 4.1 Data Dictionary

An ontology (ODD) can be used to describe the problem domain. [HAP06]
For projects beyond a certain size a simple glossary of terms ceases to be of
much value. Once the project has got to the size where it becomes difficult to
remember all the names of things you need something more than the ability to
look up by name. An ontology with its more structured and linked view can
make finding things easier.

The ontology also allows you to capture the relationships between objects,
and, using data properties, it allows you to begin the object modelling.

For very large projects, such as a Human Resources (HR) system for the
Department of Defence, you may need several ontologies as each branch may
have created its own unique language.

A typical case is the HR concept of position. While the Army and Air
Force were happy with “position” as the name, the Navy called their
equivalent a “billet”. They are highly similar concepts, but it's
impossible to merge them into a single item.

 4.2 Requirements

The requirements for a very large system can become a huge document in its
own right. It is also common for there to be relationships between the
requirements. Thus the requirements are another candidate for an ontology
(ODD). [HAP06]

The ability to import one ontology into another means that a requirements
ontology can be imported into other ontologies, such as the software
architecture ontology and the traceability ontology.

 - 11 - SASSY

Preliminary Analysis Ontologies

There are quite a large number of possible Quality Requirements that might be
considered when creating the requirements document for a system. An
ontology (OED) of documented candidates can be referenced during the
development of the system requirements.

 4.3 Software Architecture

The Software Architecture discipline has a large body of knowledge that might
be more useful as an ontology (OED). The SASSY project aims to demonstrate
the utility of such a collection.

There should be a static ontology that encapsulates the discipline, and a second
that captures the specifics of the project.

Since ontologies can be imported into other ontologies it might be sensible to
partition the SA discipline into several smaller ones:

• Quality attributes;

• Tactics;

• Design patterns; and

• Products

 4.3.1 Quality Attributes

In the paper [EVE07] describes setting up Protégé and Eclipse to capture an
ontology of quality attributes. He then goes on to convert the ontology into
UML for publication as part of the architecture documentation. Our goal is to
automate that last step.

 4.3.2 Tactics

Architectural tactics can be collected into several groups including availability,
modifiability, performance, security, testability, and usability. These are
described in [BAS03].

 4.3.3 Design Patterns

In general design patterns are targeted toward the detailed design phase of
development. The classic work on design patterns [GAM95] provides no
examples of architectural patterns at the level we are discussing, however they
do provide a structured language for documenting design patterns, and our
ontology should capture that structure. Subsequent books on patterns do
sometimes include more architectural patterns, such as [MAR98] which has a
short chapter on Architectural Patterns. At the architectural level we are more
interested in ideas for managing the entire development, such as provided by
[VOL05].

 - 12 - SASSY

Preliminary Analysis Ontologies

 4.3.4 Products

The amount of software available is probably beyond most attempts to
catalogue it, so any comprehensive listing would quickly become hopelessly
out of date. However, SASSY should include a schema for describing products
so that a project can record details of products that were tried and/or used in
the final product and also in the exploratory phases.

 4.4 Traceability

For many systems it is important to know how each component depends on the
system requirements. There is rarely a one-to-one mapping from requirements
to components, or even lines of code, so some way of capturing these
relationships seems to be called for. An ontology (OED) seems like a
candidate, and the SASSY project should support tracing requirements through
the architectural design phase.

 4.5 Configuration Management

When a large system is being developed by multiple teams, working at
differing rates, perhaps even on completely different increment cycles it can
become “interesting” trying to keep track of which combinations of
components are known to work together (or not).

An ontology, with its ability to handle a large variety of relationships, seems
like a good fit to the configuration management problem.

 - 13 - SASSY

Preliminary Analysis Interfaces

 5 Interfaces

 5.1 Input Interfaces

The inputs to the software architecture process are the vision statement, the
preliminary analysis document, the data dictionary and the functional and
quality requirements documents.

The software architecture process also contains a body of its own knowledge.
Currently this is mostly held in the expertise of our software architects, but for
this project we aim to capture as much as we can into a core software
architecture ontology.

For a general project there may not be much control over the format of the
inputs since they may come from a client who will simply provide the
requirements etc. as a set of word processing documents. We can either accept
these documents as the input, or transcribe them into the ontologies described
above. It may be that the act of transcribing them will uncover gaps which the
requirements analysis can attempt to resolve.

 5.2 Output Interfaces

The outputs from the software architecture are a set of documents and
diagrams that describe the system from a range of viewpoints.

From our vision statement we intend to use knowledge engineering,
specifically ontologies, to store the software architecture, and we also
understand that we intend for this to be used when creating very large systems.
One of the tasks in building a system, and an output of the preliminary
analysis, is the glossary or data dictionary for the project's terminology. For a
very large system it would seem logical to use an ontology to store this data
dictionary.

Given that the aim of this project is to produce documentation from the
contents of an ontology, it would seem reasonable to extend the project to the
generation of views and published formats for the glossary ontology.

It is often useful to know how all the parts of a software system are related. In
particular it is often useful to know what functional or quality requirements
drove various aspects of the design, code, testing, documentation, etc.

If we were to relate all the components of a system together into an ontology
then it might be possible to readily deduce such information and thus be in a
better position to maintain the system.

Hence the requirements for the system should be drawn into the software
architecture ontology, or perhaps exist as an ontology of there own which can
then be referenced from the Sassy ontology.

 - 14 - SASSY

Preliminary Analysis Interfaces

 5.3 Quality Requirements

Also from the vision statement we can expect our system to have a core
Software Architecture ontology, and part of this will be a collection of quality
attributes. These would be of interest when creating the Quality Requirements
document, so it would appear to be a useful extension to the system to be able
to print out such a list from the Software Architecture ontology.

 5.4 Document Format

There are a variety of possible formats for the documents, ranging from plain
text, to HTML, Word Processing and to PDF.

While plain text might be the easiest to generate, and it has advantages if you
want to do further processing with it, it does not present very well to those that
expect to see a high quality product.

HTML is fine for on-line viewing, but generally does not print well. If
XHTML is used it can still be further processed if necessary.

The internal format of most word processing documents is quite complex, and
sometimes not well documented. This makes generating the documents quite
difficult. The other problem with word process documents is that they can be
subsequently edited. There is, therefore, a danger that the output documents
will be maintained, rather than the underlying ontology. This could lead to
confusion as documents get out of step.

One option that produces high quality output, in PDF, is to generate LaTex.
This is a well documented format that is easy enough to generate.

 5.5 Diagram Format

The natural choice for diagrams is SVG. This is easy to generate, both
manually and with various tools.

It is also easy enough to further process if necessary, since it is just XML.

While simple diagrams can be, and probably should be, embedded into the
documents to which they refer, larger, more complex diagrams might be better
left as separate documents.

If we allow separate documents for the diagrams it opens up some additional
possibilities. We might introduce a third dimension and create a 3D model that
can show more complex relationships than would be practical for a 2D
diagram. Alternatively we might use animation to show how things change
over time.

 - 15 - SASSY

Preliminary Analysis Component Exploration

 6 Component Exploration
This section describes products that may prove useful for SASSY. There is no
guarantee that they will be used – they might be counter examples of things we
should avoid.

 6.1 Storage

The two candidates for storing our knowledge base (KB) are RDF and OWL2.
While OWL provides a rich environment for describing stuff and one which
can be reliably used by inference engines, RDF provides a much more open
slather approach that can allow almost any construct.

At this stage it is not clear what benefit a reasoner or inference engine could
provide. The open world model of OWL makes it difficult to use to spot
missing data which is perhaps the most important function we need in SASSY.

From a practical point of view OWL currently requires a Java environment,
while there are good C libraries for RDF. It would be nice to avoid Java if we
can, but we can use ZeroC's ICE product to connect Java to C++ if OWL is the
best solution.

If we provide a user interface for accessing RDF that understands RDF
Schemas (RDFS) then we can avoid some of the issues with RDF's
unconstrained models.

The knowledge base provided as part of the SASSY distribution will be in the
form of RDF/XML files since they will mostly be relatively small documents.
However, projects will require the larger storage capabilities of a relational
database (i.e. Postgresql). RDF libraries are designed to be able to use such
stores, however OWL seems to require additional software and it is unclear
how reasoners would work over large knowledge bases stored in a relational
database.

 6.1.1 RDF Tools

Redland

Recommendation: Create a C++ wrapper for librdf.

rdfproc

Morla

 6.1.2 OWL Tools

OWLAPI

Protege

Ontop

 - 16 - SASSY

Preliminary Analysis Component Exploration

 6.2 Data Entry

There are two aspects to data entry: Construction of the model and populating
it with instances. For both OWL and RDF we will need to construct a user
interface program for entering the instance data. For OWL there is the Protege
program for constructing the model (and which can also be used for entering
small amounts of instance data). If we build an RDF data entry program that
understands RDFS, then if we build a schema for schemas it should be able to
satisfy both requirements.

The data entry program will need to dynamically create its interface based on
the RDFS or OWL schema since it will need to be used for populating the
knowledge base with project specific data that we cannot know about in
advance.

The Qt libraries include a module that can dynamically construct a UI from an
XML file (as created by its designer program). If we construct the XML using
some XSLT from the output of a SPARQLor SPARQL-DL query it might be
relatively easy. This needs to be investigated (including how to get data into
and out of the dynamically created UI.

Recommendation: Build a proof-of-concept application that can use an RDF
schema to create its UI and then use this to perform CRUD operations on an
RDF KB.

 6.3 Document Generation

 6.3.1 Queries

SPARQL is a mature technology for accessing RDF.

SPARQL-DL can access OWL, but is aimed at the instance data, not the
schema. This may make it more difficult to dynamically construct a UI.

We can also directly access an OWL model in Java using the OWLAPI. This
code can navigate the model.

 6.3.2 Natural Language Generation

We can either assemble the document using text fragments stored in the
knowledge base, or we might be able dynamically generate some of the text
from a more abstract representation.

The following are short reviews of some of the NLG systems which generate
English and appear to be still actively supported.

• KPML seems to be the most well developed project for NLG.
However it requires Lisp and is beginning to appear a bit neglected
with broken links on its web site. It appears to work with a wide variety
of knowledge bases, but RDF is not mentioned and OWL is. If this
product can be made to work well it would add significant weight to
using OWL for storage.

 - 17 - SASSY

Preliminary Analysis Component Exploration

Attempts to build using commonly available Linux Lisps (gcl, sbcl)
failed. The links on the web page that reference OWL are all broken,
which leaves LOOM as the required knowledge base which seems
problematic at best. Come back to KPML if nothing else possible.

• VINCI provides a pre-built application without source. It does not
appear that it can be integrated into SASSY.

• Amalgam is a novel system developed in the Natural Language
Processing group at Microsoft Research for sentence realization during
natural language generation. Sentence realization is the process of
generating (“realizing”) a fluent sentence from a semantic
representation. From the outset, the goal of the Amalgam project has
been to build a sentence realization system in a data-driven fashion
using machine learning techniques. Amalgam accepts as input a logical
form graph capturing the meaning of a sentence. Amalgam transforms
the logical form into a fully articulated tree structure from which an
output sentence is read. To date, we have implemented Amalgam for
both German and French, with English in the works.
There doen't appear to be anything usable for integrating into SASSY.

• MDA (Multilingual Document Authoring) from Xerox is an interactive
natural language generation system which uses a unification grammar
formalism for the specification of well-formedness conditions both on
the semantics and on the surface realization of documents. The MDA
project provides interactive tools, such as context-aware menus, for
assisting monolingual writers in the production of multilingual
documents. The author's choices have language-independent meanings
(example: choosing between a solution and an emulsion in a drug
description document), which are automatically rendered in any of the
languages known to the system, along with their grammatical
consequences on the surrounding text.
This provides an interactive interface, not what we need for SASSY.

• WYSIWYM aims to allow domain experts to encode their knowledge
directly, by interacting with a feedback text, generated by the system,
which presents the knowledge defined so far and the options for
extending or revising it.
The acronym means `What You See Is What You Meant'. The feedback
text presented to the user (What You See) reveals the knowledge that
has been encoded during the interaction so far (What You Meant).
Documentation of knowledge bases becomes automatic, since the
system is designed to produce a description in natural language of any
knowledge base in any state of completion. The only limitation is that
the knowledge base must conform to an ontology which from the user's
point of view is fixed. If this ontology proves insufficient, it must be
extended by a programmer; the user cannot add new concepts because
the system would lack the linguistic resources to express them.

 - 18 - SASSY

Preliminary Analysis Component Exploration

• ASTROGEN (Aggregated deep and Surface naTuRal language
GENerator) is a Natural Language Generator written in Prolog. Which
hopefully can be used by almost anybody. ASTROGEN has been used
for generation of natural language (English) from formal specifications
and STEP/EXPRESS Specifications. ASTROGEN consists basically of
two modules the Deep and the Surface generator. ASTROGEN was
written originally for generating Natural Language from formal
specifications for the telecom domain.
Likely requires SICSTus Prolog which is a non-free Windows only
product.

• NaturalOwl A natural language generation system that produces texts
describing individuals or classes of owl ontologies. Unlike simpler owl
verbalizers, which typically express a single axiom at a time in
controlled, often not entirely fluent natural language primarily for the
benefit of domain experts, we aim to generate fluent and coherent
multi-sentence texts for end-users.

• SimpleNLG A simple Java-based generation framework. SimpleNLG
is a relatively simple Natural Language Generation realiser, with a Java
API. It has less grammatical coverage than many other realisers, but it
does not require in-depth knowledge of a syntactic theory to use. The
core of the package is the realiser, lexicon, and features packages.

It appears that NaturalOWL and SimpleNLG are the most promising
candidates. Both use Java and should be usable on a Linux system.
NaturalOWL comes as a plug-in for Protege which may have implications for
integrating it into SASSY.

Recommendation: Create a small ontology and do a comparison of the quality
of the generated text for NaturalOWL and SimpleNLG.

Recommendation: Investigate the possibility of rewriting the better
performing NLG as a C++ library.

 6.3.3 Document Formatting

There are essentially two types of document. The first has a well known
structure, the knowledge of which can be built into SASSY. The second is for
project specific documents where SASSY can have no knowlwdge of what
will be in it.

This means that SASSY must have some means of selecting appropriate data
and formatting arbitrary documents. Since it must have this capability, it would
be simpler to use it for all documents.

The first version of SASSY used a simple scripting language to navigate an
OWL model and build a document. This approach remains a possibility.

An alternative is to link the elements of a document together within the KB.
Essentially we are storing the script in the KB.

 - 19 - SASSY

Preliminary Analysis Component Exploration

The danger with these approaches is that the document only presents what its
author expects. If the KB should contain additional relevant information it may
not get mentioned in the documentation, hence it is important when retrieving
the data to allow the search to extend a bit beyond the specified data.

 6.3.4 Diagram Creation

A software architecture document will require diagrams of various types,
including the UML set.

Graphviz can create diagrams containing connected nodes.

We may need to develop a small application that can create diagrams similar to
the following:

 - 20 - SASSY

Preliminary Analysis Component Exploration

Bibliography
BAS03: Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice,

2003
BER06: Julita Bermejo Alonso, Ontology-based Software Enginnering, 2006
DES04: Philippe Desfray, Making a success of preliminary analysis using UML, 2004
EVE07: Antti Evesti, Quality-oriented software architecture development, 2007
G&S94: Garlan & Shaw, An Introduction to Software Architecture, 1994
GAM95: Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design

Patterns - Elements of Reuseable Object-Oriented Software, 1995
HAP06: Hans-Jörg Happel, Stefan Seedorf, Applications of Ontologies in Software

Engineering, 2006
M&B05: Ruth Malan and Dana Bredemeyer, Software Architecture: Central Concerns,

Key Decisions, 2005
MAR98: Robert Martin, Dirk Riehle, Frank Buschmann, Pattern Languages of

Program Design 3, 1998
VOL05: Markus Völter, Software Architecture - A pattern language for building

sustainable software architectures, 2005
WAL02: Kurt Wallnau, Scott Hissan, Robert Seacord, Building Systems from

Commercial Components, 2002

 - 21 - SASSY

Preliminary Analysis Appendix A SimpleNLG

Appendix A SimpleNLG
This appendix describes an investigation into the Java program SimpleNLG.

 6.1 Overview

The architecture is promising: It consists of a complex tree like data structure
which is passed along to a sequence of processors that each perform a stage of
the transformation. This could be easily extended to add other processing steps
such as content selection and discourse planning. Processors for saving and
loading the data structure, or realising it in various formats seem to be quite
possible.

The core data structure is basically a tree of nodes. However, instead of each
node having one set of child nodes, it uses a map to store multiple lists of child
nodes. In addition each node has a map of named objects. These are Java
Object types, and hence can store anything. (The design merged the child
nodes into this map, but separating them seems like a good idea.)

In order to get a good look at the code I attempted to rewite some of it as C++.
The issues included Java's Object hierachy which allows everything to be in
the same inheritance graph; the use Java's enum classes, also in an inheritance
relationship. It does appear that the program does not use a solid OO design –
it uses several enums to avoid having to create subclasses, and makes
extensive use of “instanceOf” to control the execution path, rather than using
virtual or overloaded functions. The processors have unlimited access to the
data of each node, which defeats the very purpose of using an OO language.

The design has been structured so that alternative languages could be added.
The English specific parts are in separate Java paths.

 6.2 The Processors

The architecture of SimpleNLG is a pipeline of processors, and a “Realiser”
that passes the data object to each one in turn.

(It would appear to easy enough to make the Realiser programmable so that
configuration data could determine which processors to use. I can also imagine
having the processors in dynamically loaded libraries.)

 6.2.1 Syntax Processor

This is the processor for handling syntax within the SimpleNLG. The
processor translates phrases into lists of words. (Note that this does not apply
to “canned text” which is mostly unchanged in its passage through
SimpleNLG.)

 - 22 - SASSY

Preliminary Analysis Appendix A SimpleNLG

 6.2.2 Morphology Processor

This is the processor for handling morphology within the SimpleNLG. The
processor inflects words form the base form depending on the features applied
to the word. For example, kiss is inflected to kissed for past tense, dog is
inflected to dogs for pluralisation.

As a matter of course, the processor will first use any user-defined inflection
for the world. If no inflection is provided then the lexicon, if it exists, will be
examined for the correct inflection. Failing this a set of very basic rules will be
examined to inflect the word.

 - 23 - SASSY

Preliminary Analysis Appendix B – Thoughts on NLG

Appendix B – Thoughts on NLG
This appendix is for collecting various thoughts on the Natural Language
Generation required for SASSY

The SimpleNLG will need to be re-written in C++ and converted to a proper
OO design. For example the processors will need to use the Visitor desgn
pattern to convert their input into their output. The processors should create a
new tree from the input tree rather than modify the input tree.

The features will need to become object attributes and properly encapsulated
and accessed via functions rather than just be random structues. The nodes of
the tree need to be separated from the elements of documents, phrases and
words – these should not share a single inheritance graph.

Generating a model for the existing program will be necessary. This will
involve tracing the execution and building graphs for each use case.

The design should be subdivided into namespaces for language specific stuff,
and also for processor specific subclasses. There would be a namespace for
each of document, phrase and lexical item. The phrase and lexical namespaces
would then be subdivided into language specific namespaces since these would
be different for different languages.

It might be interesting to set up the specific language rules using RDF (but this
might lead us back to the current non-OO form of the program). The lexicon
should be in RDF.

Further thoughts – the tree aspect only makes sense when the document
components are included. These would be better done by the surrounding
program. This leaves a very conventional set of classes, some with containers
of other objects.

Content Selection

The content for a document can be defined by a set of SPARQL queries that
would define the overall story arc for the document. The content selection
would then populate a document specific ontology from the results. This could
be augmented with hints to broaden or narrow the related data that is copied
into the new ontology.

It might be useful for the content selector to find a shortest path over the
selected knowledge points as a preliminary for discourse planning.

Discourse Planning

There is no grammar for documents, sections or paragraphs, but in the domain
of SASSY the old “tell 'em what you are going to tell 'em, tell 'em, tell 'em
what you told 'em” approach seems desirable.

 - 24 - SASSY

Preliminary Analysis Appendix B – Thoughts on NLG

There are papers that state that there are a small set of structures used in
discourses, and these can be applied recursively to generate a document by
consuming the content ontology.

The plan should also take the focus into account – there are rules on how best
to plan the focus.

Microplanner

This is responsible for creating a sentence plan in the form of a grammar tree
than can be forwarded to the re-written SimpleNLG.

It will include a tree re-writer that will take a re-write rule and update the tree.
These rules will come from something like an expert system which will have
modules that recognise the state of the system and select re-write rules.

It will take as input a fragment of the knowledge base that is to be formed into
one, or a short set of, sentences. It will need its own knowledge base to convert
the fragment into words (not unlike a thesaurus).

 - 25 - SASSY

	1 Introduction
	1.1 Scope
	1.2 Overview
	1.3 Audience

	2 Software Architecture Definition
	2.1 Structure
	2.2 Outline
	2.3 Quality Attributes
	2.4 Quality Attribute Scenarios
	2.5 Strategy and Tactics
	2.5.1 Divide and Conquer

	2.6 Products and Design Patterns
	2.7 Documentation
	2.8 Analysis

	3 Current Methodology
	3.1 Problems
	3.2 Chaos Theory

	4 Ontologies
	4.1 Data Dictionary
	4.2 Requirements
	4.3 Software Architecture
	4.3.1 Quality Attributes
	4.3.2 Tactics
	4.3.3 Design Patterns
	4.3.4 Products

	4.4 Traceability
	4.5 Configuration Management

	5 Interfaces
	5.1 Input Interfaces
	5.2 Output Interfaces
	5.3 Quality Requirements
	5.4 Document Format
	5.5 Diagram Format

	6 Component Exploration
	6.1 Storage
	6.1.1 RDF Tools
	6.1.2 OWL Tools

	6.2 Data Entry
	6.3 Document Generation
	6.3.1 Queries
	6.3.2 Natural Language Generation
	6.3.3 Document Formatting
	6.3.4 Diagram Creation

	Appendix A SimpleNLG
	6.1 Overview
	6.2 The Processors
	6.2.1 Syntax Processor
	6.2.2 Morphology Processor

	Appendix B – Thoughts on NLG

