
SCAL

SIMPLE C++ ACTOR LIBRARY

Design Notes

Publication History

Date Who What Changes

26 October 2015 Brenton Ross Initial version.

Copyright © 2009 - 2015 Brenton Ross
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
The software is released under the terms of the GNU General Public License version 3.

ii

Design Notes

Table of Contents
 1 Introduction..4

 1.1 Scope..4
 1.2 Overview...4
 1.3 Audience...4

 2 Actor Classes..5
 2.1 Actor...5
 2.2 Impl Template...5
 2.3 Proxy Template...5
 2.4 User Classes..5
 2.5 Messages...5
 2.6 Callbacks...5
 2.7 Supporting Classes...6

 2.7.1 Scheduler...6
 2.7.2 ThreadPool..6
 2.7.3 Printer..6

 2.8 Thread Classes..7
 2.8.1 Clock...7
 2.8.2 Signaller..7
 2.8.3 Selector...7

 3 Activities...8
 3.1 Activity Classes..8

 3.1.1 Activity..8
 3.1.2 Predicates and PredicateTable...8
 3.1.3 Rule Engine...8
 3.1.4 Activity Manager..9

 3.2 Notes and Issues...9
 3.2.1 Future Work..9

Appendix A...10

iii

Design Notes Introduction

 1 Introduction
The Actor software model uses objects that effectively run in their own
threads. The public methods of the actor objects are queued and run
sequentially.

This model allows us to develop multithreaded applications without having to
worry about mutexes and other thread management features in the application
level code (they are all handled by the supporting library).

This form of programming has some implications which are discussed in this
document.

 1.1 Scope

The document is concerned with the implications of using the actor model in
C++ programs.

 1.2 Overview

Its messy.

 1.3 Audience

Anyone interested in using an actor model for C++ programs.

4 SCAL

Design Notes Actor Classes

 2 Actor Classes

 2.1 Actor

The core function is the Actor class which defines an abstract Message class
(which is a function object) and which manages a queue of these messages.

The Actor class implements the ThreadFnOwner interface which is used by the
Scheduler to notify when thread functions start and stop.

 2.2 Impl Template

This is derived from the Actor class and the user class which is its template
parameter.

This provides methods for constructing callback objects (see below).

 2.3 Proxy Template

This is derived from the user class which is its template parameter. It provides
a method for enqueing the messages.

 2.4 User Classes

In order to use this library to create an actor object the user must create an
abstract base class and classes derived from the Impl and Proxy templates.

Calls to the actor are made to the proxy object. This queues up the calls onto
the message queue owned by the corresponding implementation object.

The base class should have a static method which returns a pointer to a new
instance of the proxy class. The constructor for the proxy takes a pointer to a
new instance of the implementation object.

 2.5 Messages

The msg template class uses some of the recent additions to the C++ standard
library, such as varadic parameter lists and tuples, to allow us to automatically
convert a function call into a message which can be queued and executed at a
later point.

Naturally it is important that the parameters are either objects which can be
copied or references to objects that will continue to exist.

 2.6 Callbacks

Some messages require the called method to reply to the originator of the
message. One way of handling this is for the originator to provide a “self
addressed envelope” for the reply. A pointer, using the shared pointer template,
is passed in the calling method and executed by the callee. A shared pointer is

5 SCAL

Design Notes Actor Classes

used so that the callback object is automatically deleted once it is no longer
needed.

 2.7 Supporting Classes

 2.7.1 Scheduler

A singleton class called Scheduler is responsible for assigning actors to
threads. Its main method, run(), should be called by main() once the actors
have been created and the initiating messages sent.

References to the actors that are ready, i.e. those that have a message on their
queue, are held on a ready queue. The scheduler waits on a condition variable
while its queue is empty.

When the scheduler is notified that the ready queue is no longer empty it pops
off the actor reference and dequeues its waiting message. These are then
combined into an ActorFunction object and passed to the thread pool for
execution.

The scheduler includes flags that allow the program to continue when there are
no messages pending. This is useful for programs the use timers or which wait
on client processes.

 2.7.2 ThreadPool

The scheduler maintains a thread pool which has a list of up to THREADS_MAX
threads.

The exec() method accepts an ActorFunction object and passes it to the next
available thread. Additional threads may be created if we have not reached the
maximum. This method will block until a thread becomes available.

The runner() method implements each thread. It waits until a function object is
available and then executes it. The owner of the function object is notified
when the function is about to start and when it concludes.

 2.7.3 Printer

Getting messages out of programs is usually done with some sort of “print”
statement. Unfortunately this is a problem in an actor based program as the
messages from different actors can end up being interleaved in the output
stream.

The library includes a Printer actor that is passed entire lines as messages by a
helper Print class which provides the usual C++ stream operators.

6 SCAL

Design Notes Actor Classes

 2.8 Thread Classes

There are a few cases where a typical program would block while it waited for
some event. The actor functions should be written so that they never block. To
accommodate this problem the library introduces some thread based classes.

 2.8.1 Clock

Since it is unwise to call functions like sleep() from within an actor's methods
there is a clock object that can be scheduled to make a call back to the actor at
a future time, or on a regular basis.

It includes a static method for converting a time point into a string.

 2.8.2 Signaller

This object uses the actor's callback method to notify an actor of an operating
system signal.

 2.8.3 Selector

This allows an actor to be notified when there is activity on a file descriptor. It
is used instead of the select() system call, or where a read or write might block.

7 SCAL

ThreadfnOwner

ThreadFunction

Actor
Actor::Message

ActorFunction

ThreadPool

std::thread

<<T>>

msg

SAE

Callback

Scheduler

UserClass

Proxy Impl

UserProxy UserImpl

Design Notes Activities

 3 Activities
This functionality is not currently part of SCAL

The problem that confronts one when trying to develop an application using
the actor model is that there is a rather severe case of “inversion of control”.
Each actor has to maintain its state in an explicit set of attributes and the
program is reduced to a large set of event handlers, predicate functions and
action functions.

In the more general case an actor might be having separate conversations with
several other actor objects and needs to be able to keep the state of each
conversation.

The model developed for this experiment was based on the Expert System
pattern. The event handlers would make changes to the state variables and then
trigger a rule engine. The rule engine would apply predicate functions stored in
a table until one returned true. Each predicate function has an associated action
function which can make further changes to the state and make calls to other
objects.

 3.1 Activity Classes

 3.1.1 Activity

This is a base class that provides the basic operations for a collection of state
variables. Each activity class will have a string defining its type so that the
system can apply different sets of predicate functions according to the type of
activity. Each activity object has a unique serial number so that messages can
be delivered to the state variables for a specific conversation.

The derived classes need to implement an install method that sets up a table of
predicates that is installed into the rule engine.

 3.1.2 Predicates and PredicateTable

The Predicates class defines a common type for the PredicateTable template.
The template parameter is the class derived from Activity.

The table contains pointers to functions that return true if state variables in the
activity match its conditions. Each predicate function has a corresponding
integer which is used to look up the action function to run.

The table is stored into the rule engine, indexed by the type of activity. It is
therefore only necessary to install the predicates once for each type of activity,
for each actor.

 3.1.3 Rule Engine

The engine holds tables of predicate functions, indexed by the type of activity,

8 SCAL

Design Notes Activities

and a table of action function pointers indexed by the integer associated with
each predicate function.

When triggered the engine applies the predicates associated with the activity
until one returns true. The corresponding action function is then executed.

 3.1.4 Activity Manager

This is a base class that actor implementations can inherit in order to use the
activity part of this library.

It includes an abstract method for creating activities. These are installed into
the rule engine when the first of each type is constructed.

 3.2 Notes and Issues

For someone used to the usual imperative programming style it is quite
difficult to design a program using the actor model. The myriad of functions
and state variables quickly overwhelms the mind.

One approach is to start with the action functions, then for each one work out
what combination of state variables should trigger it. Then you can design the
predicate functions. The event handlers are done last and modify the state
variables.

Without careful design it is easy to create an event storm, or for the program to
stall in a state that generates no actions, or for the actors to perform unexpected
actions.

A tool or code generator would be a useful addition as it could verify that the
above problems were unlikely. However, we need to be careful not to simply
define a new language – the aim is to create actors in C++, not some other
language.

 3.2.1 Future Work

The next round of work on this project should aim to develop a more complex
example program and to develop some tools for designing the activity
functions.

9 SCAL

Design Notes Appendix A

Appendix A

10 SCAL

	1 Introduction
	1.1 Scope
	1.2 Overview
	1.3 Audience

	2 Actor Classes
	2.1 Actor
	2.2 Impl Template
	2.3 Proxy Template
	2.4 User Classes
	2.5 Messages
	2.6 Callbacks
	2.7 Supporting Classes
	2.7.1 Scheduler
	2.7.2 ThreadPool
	2.7.3 Printer

	2.8 Thread Classes
	2.8.1 Clock
	2.8.2 Signaller
	2.8.3 Selector

	3 Activities
	3.1 Activity Classes
	3.1.1 Activity
	3.1.2 Predicates and PredicateTable
	3.1.3 Rule Engine
	3.1.4 Activity Manager

	3.2 Notes and Issues
	3.2.1 Future Work

	Appendix A

