
RDF Views

Brenton

May 2025

1 Introduction
Some RDF models are large, and some are enormous. They are far larger than
can ever be loaded into the memory of a typical personal computer. This is
likely to remain the case even when PCs have TB RAM modules as the RDF
models will also be even larger.

In order to process data from these models it is necessary to create a small model
that contains just the data of interest.

These small models are known as views1.

1.1 Scope
The document covers the design of a view system. This includes the design for
setting up views for a model; creating the view and populating it; and using it
as a model.

1.2 Overview
1.2.1 Reason for Views

There are two reasons for using views: Providing an extract from some very
large models; and providing a focussed view when displaying a model.

In the first case the view will have up to a few hundred statements, but frequently
a lot less. In the second case the view might only have a dozen nodes since more
than this can make for a cluttered diagram.

1.2.2 Construction

A view is constructed by starting with an RDF node, or statement, and then
doing a breadth first search for connected nodes. This is repeated until the
desired range is reached, or a maximum size is reached.

1This is my term, borrowed from the similar function in SQL.

1



The problem is that schema nodes can be connected to thousands, or millions,
of other nodes. Just discovering that you have reached such a node can crash
the process.

1.2.3 Boundary

The view system will include the ability to set up a boundary for a view. This
will prevent the view from retrieving data that is out of the intended scope of
the view.

1.2.4 Usage

A view should be identical to any other RDF model once created. It should be
possible to create small views for use by visualisation functions. It should also
be possible to combine them with other models as a submodel2.

1.3 Audience
This document is intended for the developers of SASSY, and, in particular the
developers of the RDF code.

2Currently submodels can only be constructed from the base models.

2



Glossary

Item Description
Bound A single element of a boundary. It performs a single

test on a node to determine if the containing
statement has reached the edge of the desired region.

Boundary A named set defining a set of bounds, and the
default size and range for the view.

Catalog(ue) An RDF model that contains the metadata for a set
of models.

Compound Model A model combining two models, one of which is
updatable and one which has a copy of a set of
submodels.

Model An RDF database that has been loaded into memory
for processing.

Node One of the three elements that make up an RDF
statement.

Range The maximum number of steps to get from the
starting node to any other node in the region.

RDF Resource Description Framework. A linked data
system.

RDFGUI A general purpose GUI program for examining and
manipulating RDF models.

Region A connected set of statements in a model.

SASSY Software Architecture Support System.

Schema A set of statements that define the classes and
relationships used in a model.

Size The number of statements in the model or view.

Statement The primary record structure for RDF. It consists of
three nodes called the subject, predicate, and object.

3



Item Description
Submodel A model that has been included as supporting data

for a model.

View An extract from a database selected for some
purpose

4



2 Boundaries
2.1 Purpose
2.1.1 Large Models

Each large model will have one or more boundaries defined. These will specify
where the search process should stop for a particular branch.

2.1.2 All Models

When visualising a model it should be possible to dynamically limit the region
to be displayed.

2.2 Form
A boundary will consist of a set of bounds. These will be used to check if an
RDF node is at the edge of the region.

The bounds will come in several types. A predicate bound will be used to match
against the statement predicates. A resource bound will match against a resource
node (subject or object). A matching bound will match the start of a URI, and a
regex bound will also match a URI. (The latter is a bit more resource intensive.)

The boundary may also contain the range of the model. This is the number of
steps in the breadth first search from the start node. Also a maximum number
of statements may be specified.

2.3 Storage
The boundaries will be stored in the catalogue with the other metadata for the
models. This is RDF data.

The catalogue schema will be extended to include boundaries for each model.
Each boundary will be given an identifying name.

2.4 Configuration
2.4.1 Large Models

A GUI will be constructed in which boundaries can be set up. Initially this will
be a tab in the RDFGUI program, (or a panel in the Catalog tab) but will
eventually be a GUI library that can then be used as a standalone program, or
a panel in other GUIs.

It should include the ability to copy between models.

5



2.4.2 Visualisation

The Visual tab in RDFGUI will have a popup/floating dialog for configuring
the display of models.

6



3 Views
3.1 Purpose
3.1.1 Large Models

A view allows access to a region of models which are too large to load, or would
take too long.

3.1.2 Small Models

Even small models are often too large to display diagrammatically. The rapid
creation of a small view can provide a zoom effect allowing the user to focus in
on some region of interest.

3.2 Construction
A view will be constructed in a memory model, probably the Hashes type.

3.2.1 Start Point

A view starts at some particular node (or, perhaps, statement) in the source
model. For large models this node is typically found via a SPARQL query.
During display of small models it would be the currently selected node.

Start points that fail the boundary check (i.e. they are on the boundary) will be
ignored.

For use with submodels it may be indicated by its existence in another model.
A set of potential nodes may be provided. These should be checked to confirm
they are in the model.

3.2.2 Searching

From the start point the incoming and outgoing arcs are obtained and the
statements added to the view. The nodes are checked for the boundary condition
and if not at the edge the nodes that are not already in the view are added to
the new list of starting points. The process is then repeated until the range or
size constraint is reached.

3.3 Configuration
Views for large models can be preset, while those for visualisation can be
configured dynamically.

The details of a view of a large model will be stored in the Catalogue. They will
be entered using a GUI panel, initially in RDFGUI.

Configuration details will include the source model, the boundary to use, the
defaults for range and size, and a default starting point.

7



4 Submodels
This section describes the integration of views of large models with the submodels
system.

4.1 Purpose
Submodels allow the composition of models from a set of smaller models. This
allows us to modularise the models, rather than have just a few large ones.
Models can be reused, which simplifies maintenance.

For example a model can include its schema model as a submodel. The specific
schema can include the core schema.

4.2 Mechanism
The submodel system uses a compound model. This consists of a normal model
(main) and a temporary memory model. The temporary model is loaded (copied)
from the included submodels plus the main model. The compound model
performs queries (both SPARQL and programmatic) on the temporary model,
and updates on both the temporary and main models. This has the effect of
limiting the updates to just the main model which avoids the possibility of
corrupting the schemas etc.

4.3 Configuration
The catalogue already contains the submodels for each model. The RDFGUI
program has a panel for adding and removing submodels from a model.

If the view for large models appears as just another model in the catalogue then
no change will be required in the configuration process.

4.4 Views
A temporary view will be created and then loaded into the temporary memory
model for the submodels. It will use the boundary and default sizes recorded in
the catalogue.

4.4.1 Starting Points

The starting points will come from the nodes in the already loaded statements.
This implies the views should be loaded last. It also puts the initialisation of the
view into the realm of the model rather than the catalogue, or as a combined
effort.

It would be useful if resources that are from another model could be tagged
with their source. One possibility would be for each node to have a link to its
original model, but this is not supported by the C library. (Models are more

8



of an artifact than a core part of RDF.) Another idea is to include a statement
indicating the source for just the nodes that are from a view. The experience
with prefixes3 would suggest that this is not a good idea. Following from that it
seems that putting this data in the catalogue might be the best approach. But
how?

During the loading of a view into the temporary model in the compound model
each node will be given a link to the view, probably as a URI. When a link is
made from the main model to one of these view nodes, the node will be added
to a list of starting points for the main model. This list will need to be saved
into the catalogue when the model is closed. Thus the catalogue will have all
the information it needs to open and initialise a view.

4.4.2 Initial Starting Points

The above describes how a compound model with included views can be reloaded
once it has been created. There remains the issue of how to get it started.

The basic mechanism is a SPARQL query on the large model that we need to
create a view from. This can get us a starting point, but there are questions.

Lets assume we have a large model, much-stuff, that has been installed in a
database, and defined to the catalogue. We have also defined a view in the
catalogue, much-stuff-view, that has much-stuff as its source, and a suitable
boundary installed.

There are several scenarios:

We need to do some exploration. Using any available documentation, and running
queries on much-stuff looking for classes and properties, we determine the basic
structure of the model. We then run queries to find one, or a few, nodes that are
likely to be good starting points. These are added to the catalogue’s description
of the view, much-stuff-view as its default starting point(s).

If we now open much-stuff-view with RDFGUI we will be able to see a region
around the starting points.

In the second scenario we open a model that has much-stuff-view as a submodel.
We can now create statements that reference nodes in the view. These will be
added to the catalogue when the model is saved. On re-opening they will be
automatically used as starting points in addition to the defaults. The defaults
can then be changed to include other parts of much-stuff.

3In an early version of librdfxx each model had a set of statements defining the prefix
to URI relationship. It became obvious that metadata should be stored separately and was
transferred to the catalogue.

9



5 Development Tasks
This is a list of the things that need to be done to the SASSY software to
implement this idea.

10


	Introduction
	Scope
	Overview
	Reason for Views
	Construction
	Boundary
	Usage

	Audience

	Glossary
	Boundaries
	Purpose
	Large Models
	All Models

	Form
	Storage
	Configuration
	Large Models
	Visualisation


	Views
	Purpose
	Large Models
	Small Models

	Construction
	Start Point
	Searching

	Configuration

	Submodels
	Purpose
	Mechanism
	Configuration
	Views
	Starting Points
	Initial Starting Points


	Development Tasks

