
SASSY

ZERO IMPACT NOTIFICATION CHANNEL

Overview

Publication History

Date Who What Changes

9 November 2017 Brenton Ross Initial version.

Copyright © 2009 - 2017 Brenton Ross
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
The software is released under the terms of the GNU General Public License version 3.

ii

Overview

Table of Contents
 1 Introduction..4

 1.1 Scope..4
 1.2 Overview...4
 1.3 Audience...4

 2 Initial Thoughts..5
 2.1 The Mechanism..6
 2.2 The Solution..8

Appendix A...9

iii

Overview Introduction

 1 Introduction
This document provides an overview of the Zero Impact Notification Channel
(ZINC). The libzinc library provides client and server code that allows a server
to publish its state without the clients being able to affect the server or each
other.

 1.1 Scope

The document describes the thinking that went into its design.

 1.2 Overview

The body of this document is drawn from a conversation on Fedora Forum.

 1.3 Audience

Anyone wanting to understand the purpose of libzinc.

4 SASSY

Overview Initial Thoughts

 2 Initial Thoughts
I have been playing around with trying to implement the actor paradigm in
C++. (I think I have something that works - but that is another story). I think
this got confused in my mind with a discussion a few days ago about
consciousness.

Anyway, the thought is that perhaps it might be useful if programs had an
internal object that was advised of the status of the rest of the program. This
object would not be involved in the normal processing, except, perhaps, to
tweak a few policy type parameters. This object would write its state to a file
which could be monitored by other programs (or even a web page). This file
would be a snapshot, not a log.

I know this sounds a lot like a logging system, but I think its a bit different -
there would be no permanent trace, just the current status. It could expose a lot
more about the internals of a program than would be practical for a logging
system. I envisage that it would report on things like exceptions, and how busy
various part of the program were.

At a previous job we had a system that had processes that ran for months at a
time. I often thought it would be nice to see more about how they were going
than could be discerned through the exception logging or with the usual UNIX
commands. Unfortunately I never had an opportunity to implement that
capability, though we did discuss it on more than one occasion.

I can even see where programs would monitor each other and adjust their
behaviour according to what the others doing.

The monitoring itself isn't an issue.
Its a question what to monitor, what string/message to identify and
clarify a specific status for an application.

sea (2015/05/15)

You raise a fair point about what status information to record. I am still
considering that but I think it will include exceptions that are caught and
handled within the program and the transaction rate of the various parts of the
program (where applicable).

I am not intending for this to be part of, or managed by, yet another service. It
is more of an ability for any program to monitor how other programs are
performing and perhaps adjust their own behaviour. This is likely to be a long
way into the future. For now I just want to be able to visualise how programs
are "feeling".

5 SASSY

Overview Initial Thoughts

 2.1 The Mechanism

My immediate concern is how to get the information out of the program. I am
thinking that shared memory or a memory mapped file would be the most
efficient and is best able to handle the "one writer - many readers" aspect. This
then leads to synchronisation issues - I don't want the writer to block waiting
for readers as this could be adapted into a denial of service attack. I thought of
writing to a temp file and renaming it, but that would defeat much of the
performance of a memory mapped file. I also cannot let the reader just read the
data without synch as this would probably crash the reader.

Something to consider, though mostly applicable to scripts, I guess

Some infinite or broken loops, may increase cpu usage incredible
fast, even to the point where the kernel has to throttle the cpu
speed.
How'd you catch something like that?
Because some parts of my brain believe with any C# broken loop,
it might just happen the same way...

Saying, how would you identify a 'proper' incremention of the cpu
(usage or its temperature as example) compared to a 'falsely'
incremention of it?
How does an external application know, what/if/where/why/when
something is called and do its checks accordingly?
It cant, unless you handle each and every software out there, OR,
let that tool use 'template-sheets' to use which hold the data
required to identify the checks for its shipping application.

sea (2015/05/30)

I hadn't considered script usage for this, but I think I can see how it might be
wrapped in a program so the facility could be used in a script.

Handling broken or crashing programs is a bit out of scope. That is something
for the normal system to handle. This is more for the program that seems to be
running OK. Of course, there would be nothing to stop someone from
reporting things like cpu usage if they wanted to. This library is for providing a
mechanism to make those reports visible - it will up to the program designer to
decide what to report and how to collect the data.

The issue of understanding what the data means is real enough. For the first
iteration I will just provide the ability to give names and descriptions for each
value.

I have a scheme that should allow other programs safe access to the data. The
data will be written to two regions and a flag will indicate which one should be
read from. The flag will be a single bit in the shared memory area so it cannot

6 SASSY

Overview Initial Thoughts

be ambiguous. The data will be stable in each region while the flag indicates it
is the current region, and for a while after the flag is changed so as to give the
reader time to do its reading. This will allow programs like web servers to
asynchronously access the data. When the flag is changed there will also be a
notification using a pthread condition variable. This will allow other programs,
such as GUIs, to wait for changes.

Sounds a little like JConsole in Java, which has been around for
years (and has its own API).

Not quite the same domain. I am thinking of something built into applications
rather than something that monitors them from the outside. This should enable
them to report more subtle issues in an application specific manner.

One typical reason we don't trust self-reporting by software is that
when/if the program goes wrong, the self-reports are useless, while
the externally 'monitors' remain valid.

Yes there really are schema for creating "health" reports from w/in
sw - often timestamps of the most recent unit of work, or counts of
the various units of work performed. To update we typically
require the sw do a lot of internal checks just as a "sanity check" to
probabilify the sw is not off in the weeds.

I agree that this approach has some problems detecting when a program has
gone "off in the weeds", but that sort of monitoring is not what I am interested
in. For that sort of monitoring I was reading recently about a program that
monitored the system calls of another program and used a deep learning
algorithm to detect when the monitored program had entered an anomalous
state.

That's great, but you can monitor syscalls & libcalls a lot more
reliably with the ptrace interface than by any self-reporting. Maybe
you want to create a 'wedge' process (like 'time' or 'strace') that
keeps some ptrace'd child process call stats in shm, and avoids
reliance on the processes and language specific APIs.

As I think I said - I am not interested in that sort of reporting - that is best left
to exception logging from within the program or, as you suggest, something
that watches what is going at the system level.
To anthropomorphise it a little: It is the difference between asking you "how
do you feel" and putting you through a full medical exam. I am only interested
in what the program itself considers to be the state - even if that is not an
accurate reflection of the real situation !

7 SASSY

Overview Initial Thoughts

Even in a shm system you are going to need find a way to prevent
a race condition - process-A reading a structure half written by
process-B. You can create global semaphores, or use a very simple
CORBA process that just stores/distributes the incoming data and
keeps a per section semaphore. There are no totally trivial
solutions.

I am approaching this by storing the data twice. The data is written alternating
between two buffers with a boolean flag to indicate which is the most recent.
The buffers are updated at regular intervals (eg 1 second) which gives the
reader at least that long to read the data. I will also have a notification system
using pthread_cond_broadcast that will allow the readers to wait for updates.

I am aware that the design will not work for data values that are rapidly
updated. The design provides a snapshot of the state, not a stream.

You are just creating a lower probability of error - not a correct
design. You could learn the Dekker algorithm, or see Vanna about a
counting semaphore.

The Dekker algorithm is not applicable here as there is an unknown number of
reader processes.

There are two approaches to the problem of accessing shared data - one is to
lock it so that only one process has access at a time - the other is to detect
when a collision has occurred and retry. My solution is of the latter variety.

 2.2 The Solution

Hurray - the library is now completed and seems to be working just fine.

I abandoned the idea of using the pthread condition variable for signalling.
Instead I am synchronising the readers with the writer using some time
information in the shared memory and calls to gettimeofday. The reason was
that the necessary mutex gave a rogue reader the ability to block other readers
and to stall the thread in the writer. This would not directly affect the rest of
the writer, but I thought it would be better to not have any means for readers to
influence each other or the writer.

The basis of the design derives from the database world for applications that
use a database for storing large documents across many tables. Instead of
locking the tables which would seriously impact performance they rely on the
fact that each document uses a separate set of database rows and that collisions
would normally be quite rare, and do a check to ensure there was no collision
and retry if there was one.

8 SASSY

Overview Appendix A

Appendix A

9 SASSY

	1 Introduction
	1.1 Scope
	1.2 Overview
	1.3 Audience

	2 Initial Thoughts
	2.1 The Mechanism
	2.2 The Solution

	Appendix A

